
Robust Regression via IRLS

A thesis submitted in fulfillment of the requirements

for the degree of Master of Technology

by

Govind Gopakumar

16111009

under the guidance of

Purushottam Kar and Prateek Jain

to the

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

May 2018

Page intentionally left blank

ii

Page intentionally left blank

iv

Page intentionally left blank

vi

Abstract

The primitive of regression, especially linear regression, is a useful tool with a wide variety of

applications in machine learning, statistics, economics and finance, allowing us to model a real-

valued output y ∈ R (called the response) as a linear combination of real-valued inputs x ∈ Rd

(called the covariates or features). Given a set of n covariates X = [x1, . . . ,xn]> ∈ Rn×d and

responses y = [y1, . . . , yn] ∈ Rn, our aim is to discover a model w ∈ Rd such that y ≈ Xw.

Traditional approaches to solving this problem include techniques such as OLS (Ordinary Least

Squares), its regularized cousins such as ridge regression and LASSO, which often assume that the

response is generated for each of the n data points as yi = 〈w∗,xi〉 + εi where w∗ denotes an

unknown gold model and εi denotes noise. Assuming different noise distributions can give rise to

different estimators for w∗. In particular, the OLS technique assumes that noise is independent

and identically distributed normally.

Such assumptions need not hold for data that arise in real applications, and there is a need

for algorithms that can tolerate structured noise distributions. In this thesis, we focus on noise

models where a possibly malicious adversary injects noise, but in a sparse manner. This falls

within the general ambit of robust regression analysis. In particular, we investigate the properties

of the popular Iteratively Reweighted Least Squares (IRLS) algorithm in the robust regression

setting. IRLS is a popular choice of solver for the class of generalized linear models, sparse recovery

problems, and is a candidate for the robust regression problem as well.

Our results reveal critical flaws in the vanilla IRLS algorithm and demonstrate a class of

counterexamples where IRLS cannot guarantee global recovery of the true underlying model. We

complement these negative results with local convergence results where we show that IRLS when

modified slightly, does indeed converge to the true model if initialized carefully. We believe that this

modification can be extended to ensure global recovery without the need for careful initialization.

Page intentionally left blank

ii

Acknowldgements

I will always be grateful to my guides - Professor Purushottam Kar, and Dr. Prateek Jain for taking

on the job of advising me for my thesis. Working with the two of them has been an incredible

experience. Every Skype call left me feeling uneducated and exposed me to new parts of linear

algebra/probability/statistics and mathematics in general. Their enthusiasm has been unwavering,

and their support while I struggled through understanding our discussions was immense. I was

continuously surprised by how often one of the two would bring up approaches and insights that

would never have occurred to me, a mere masters student exploring research for the first time. I’m

grateful to have been a small part of such an amazing research program.

The work I did as part of my thesis would not have seen the light of day if not for Prof. Kar’s

enthusiasm and knowledge. His knowledge of all of optimization and machine learning always

astounds me, whenever I feel like I bring something new to our meetings, he would invariably end

up having heard of it. I will forever be in his debt for having taken me on, dealt with my extreme

laziness and worked through my ability to procrastinate. Large parts of this thesis would have not

existed if not for his attention to detail and desire to excel. He gave me enough freedom to study

whatever I found interesting, and has been an amazing thesis advisor for the past year and a half.

Having good teachers is a privilege, and I have had several over the past two years. Prof.

Raghunath Tewari was among the first professors I spoke to within the department, and he has

tried his best to instill in me an appreciation for mathematical rigor. Prof. Rakesh Bansal’s

classes were eye-opening and his examinations a constant reminder as to why probability theory is

a graduate topic. Prof. Piyush Rai introduced me to the world of machine learning, and if not for

his lucid explanations and brilliant teaching, I would not have found myself working in the areas

I did.

Every lab has its own atmosphere, and mine has been incredibly fostering and stimulating.

Placements brought us together - Subhadip, Ankita, Gowtham, Satyandra, Vishak, Ravi, Utkarsh,

Aditi, Akanksha, Sneha, Divya, all of you have been wonderful companions for the best part of a

year. My other tea companions, Atul, Rohit, Utsab, Shailesh, Manish - thank you for the excellent

breaks every day that allowed me to keep myself motivated throughout the thesis submission

iii

period. And lest I forget, my friends from across the department - Arindam, Soumik, Nitish,

Gundeep, Sandipan, Susmit for all the jokes, memes and videos that we have shared with each

other.

Good company is necessary for getting by, and I have been fortune to have kept the company

of some truly smart individuals. Nishit, Amur, Abhibhav, Sayash - I hope we shall continue our

intellectual jousting.

Anshul and Samarth, thank you for providing me with the right amount of distraction, and for

letting me step out of the academic bubble every once in a while. Thank you, Anurag, for your

periodic reminders about how inept I am at mathematics, how a Ph.D. life is far more rewarding

than selling out, and for your nagging to get around to writing my thesis.

My parents, brother, and grandmothers have all been exceptionally supportive. I will remain

always in their debt.

Every person needs a talisman, and I’m no exception. Ritika, thank you for all your help,

motivation, admonishments, and reminders. You never let me give up, and never let me get

overconfident. It would have been quite impossible to get by without your encouragement and

belief in me.

iv

Contents

Acknowledgements iii

1 Introduction 3

1.1 Our contributions . 5

1.2 Structure of this document . 5

2 Background 7

2.1 Linear Regression . 7

2.2 The IRLS algorithm . 10

2.3 Robustness in Statistical Estimation . 12

2.4 Robust Regression . 12

2.5 Adversarial analysis . 13

3 Related Works 15

3.1 Results for Robust Regression . 15

3.2 Iterative approaches . 17

3.3 IRLS . 17

4 Robust Regression and IRLS 19

4.1 Introduction . 19

4.2 Overview of the IRLS algorithm . 19

4.3 Justifying IRLS: The Optimization Perspective . 21

4.4 Relation with Other Approaches . 23

4.5 Real world performance . 23

4.6 Practical concerns . 26

5 Convergence Guarantees for IRLS 27

5.1 Convergence Analysis for Unidimensional Covariates 27

5.2 A Few Preliminaries . 29

v

CONTENTS

5.3 Convergence Analysis for Multidimensional Covariates 30

6 Failure Analysis for IRLS 35

6.1 The Flaw in the IRLS Methodology . 35

6.2 Failure cases for IRLS . 36

7 Conclusion and Future Direction 39

7.1 Regularized IRLS . 39

7.2 Truncated IRLS . 39

7.3 IRLS for Sparse Recovery . 40

7.4 Gradient IRLS . 40

vi

List of Figures

4.1 Performance of IRLS against oblivious and partly adaptive adversaries. 25

4.2 A comparison of IRLS with TORRENT and OLS against a partly adaptive adversary. 25

6.1 IRLS fails to converge to gold model with unidimensional covariates against a partly

adaptive adversary using adversarial models to introduce corruptions. 37

6.2 IRLS fails to converge to gold model with multidimensional covariates against a

partly adaptive adversary using adversarial models to introduce corruptions. 38

1

LIST OF FIGURES

Page intentionally left blank

2

Chapter 1

Introduction

Linear regression is a classical problem that pervades several areas including statistics, linear

algebra, machine learning, data mining and others. Given a set of n covariates, each of which is d

dimensional (arranged as a matrix) X = [x1, . . . ,xn]> ∈ Rn×d and real responses (arranged as a

vector) y = [y1, . . . , yn] ∈ Rn, our aim is to discover a set of weights w ∈ Rd such that y ≈ Xw.

Various criteria may be adopted to designate a notion of approximation, such as least squares

error, the absolute error, and so on.

Linear regression and its variants find applications in a wide variety of settings. Many a machine

learning problem can be reduced to (a sequence of) linear regression problems, for example, learn-

ing with bandit information [1], multilabel learning [34] and matrix completion [18]. This motivates

a desire for a deep understanding of algorithms for linear regression under various problem set-

ting. Indeed, this problem has captivated mathematicians long before contemporary applications

emerged, as is evident from classical works, such as those by Legendre [21].

Most approaches to regression assume that individual responses are generated using a simple

generative model, such as yi = 〈w∗,xi〉 + εi where w∗ denotes an unknown gold model and εi

denotes noise. A plethora of regression models, including the entire family of generalized linear

models, homeo/hetero-scedastic noise models, and many others, can be constructed by choosing

various generative models. In particular, the OLS (Ordinary Least Squares) technique assumes

that the noise is independently and identically distributed normally.

It turns out that the assumption of independent stochastic noise is especially popular, as it

often lends itself to simple estimators and analyses. However, real life applications often present

structured noise which may violate these independence assumptions, rendering these estimators

and analyses inapplicable. A particularly intriguing problem is that of robust regression wherein

the noise may have been injected in a non-stochastic and indeed adversarial manner. This is

especially true when executing regression algorithms in situations where malicious agents abound,

3

for example click fraud in recommendation systems, or else impersonation in biometric systems.

Although later chapters will present details of various adversary models, we can formalize the

basic robust regression problem as follows: we assume there is a gold model w∗ ∈ Rd such that for

every data point i = 1, . . . , n, given the covariate xi ∈ Rd, the response yi is generated as follows

yi = 〈w∗,xi〉 + bi where bi is the corruption introduced by the adversary. More succinctly, we

have in vector notation y = Xw∗ + b where b = [b1, . . . , bn]. The corruption vector b is chosen

by the adversary in a manner consistent with the adversary model, which we shall discuss shortly.

However, we will always demand that the adversary introduce sparse corruptions ‖b‖0 ≤ n0 = α ·n

where α ∈ [0, 1) i.e. only n0 of the points, which constitute and α fraction of the total data set,

are corrupted and for the rest yi = 〈w∗,xi〉. Our task is to receive the generated data (X,y) and

return an estimate of the gold model w∗.

The above model can be augmented in several ways, for instance, by allowing a combination of

sparse corruptions for some data points and simple i.i.d. noise for the rest of the data points e.g.

[5]. However, it should be noted that in order to ensure consistent recovery in the presence of an

all-powerful adversary that can decide on the corruption vector b after observing X and w∗, we

must demand α < 0.5 since even with α = 0.5, such an adversary can render this problem ill-posed

by first choosing a new model w̃ ∈ Rd and then setting bi = 〈w̃ −w∗,xi〉 for the corrupted points

(of which there are now 0.5n). In this situation, it is impossible to distinguish whether w∗ is the

gold model or w̃. The largest value of α that an algorithm can tolerate while still offering consistent

estimates of w∗ is called its breakdown point. We will strive for a breakdown point α = O (1) which

would allow a constant fraction of data points to be corrupted and yet ensure consistent recovery

of the gold model w∗. The above argument shows that this is in essence, optimal.

It should be noted that a different line of work, one that seeks to perform linear regression

in the presence of heavy-tailed noise such as Levy-distributed noise, is also often referred to as

robust regression. This clash of nomenclature is unfortunate. However, we hasten to clarify the

substantial distinctions between regression in the presence of heavy-tailed noise and that in the

presence of a malicious adversary (our setting).

1. In the former, noise is still stochastic (albeit heavy tailed) whereas in our setting, a sentient

adversary may be inducing noise after careful consideration.

2. In the former, the induced noise is purely additive and cannot perform operations such as

sign flips for the response whereas in our setting, the adversary may very well perform actions

such as flipping the sign of the response (for example, by setting bi = −signyi · |2yi|).

3. Lastly, analyses for heavy-tailed settings often continue to assume that noise is generated

i.i.d. whereas we consider structured noise which violates such independence assumptions.

4

1.1. OUR CONTRIBUTIONS

Among the several methods used to solve linear regression problems, an especially prominent

one is the technique of iteratively reweighted least squares, or IRLS. This algorithm is used to solve

a wide variety of extensions to the linear regression problem, such as robust regression (with heavy

tailed losses) and generalized linear modeling problems. In this thesis we question and explore the

applicability of the IRLS method to the robust regression setting.

1.1 Our contributions

In this thesis, we analyze the popular Iteratively Reweighted Least Squares algorithm which is

widely used to solve generalized linear modeling problems and regression problems in the presence

of heavy tailed noise. This algorithm has witnessed a lot of attention and several variants exist,

each customized to specific problem settings.

1. We reveal critical flaws in the vanilla IRLS algorithm and demonstrate a class of counter

examples where IRLS cannot guarantee recovery of the gold model w∗ even in the limit of

infinite data n→∞. We show this to be the case even in the weak oblivious adversary model

where the adversary has to commit to the corruption vector b before witnessing X and w∗.

2. We complement this negative result with local convergence results where we show that IRLS,

when modified slightly does indeed converge to the gold model w∗ if initialized carefully.

Our results require non-standard analytic techniques that are, to the best of our knowledge,

novel in the robust learning literature. We believe that these modifications allow IRLS to

offer global recovery without the need for careful initialization.

3. We present an empirical comparison of the performance of the IRLS algorithm as compared

to other approaches on the robust regression problem in the presence of a malicious adversary.

1.2 Structure of this document

The thesis is broadly divided into two parts. Chapters 2 and 3 form the first part, and largely

act as a self-contained overview of the background required for understanding the contributions

of this thesis. In chapter 2, we review basic ideas used in solving the linear regression problem,

as well as its variants. We outline two basic extensions to the ordinary least squares method, the

lasso formulation as well as ridge regression. In addition, we review the basics behind adversarial

analysis, robustness in statistics, and the IRLS algorithm. Chapter 3 covers recent results in these

areas. We give an outline of recent advances in computationally efficient robust statistics, especially

robust regression. When applicable, we state the main theorems and claims that form the state of

the art for this problem.

5

1.2. STRUCTURE OF THIS DOCUMENT

Chapters 4, 5, and 6 form the core of the contributions of this thesis. In chapter 4, we outline

the IRLS algorithm as applied to the robust regression problem. We show how IRLS can be viewed

as part of a family of algorithms, and also show why there are some crucial drawbacks to the naive

IRLS model. Chapter 5 provides a general overview of local convergence results that were obtained

for the IRLS algorithm. We show two results, one in the 1-dimensional case, primarily to gain

intuition, and a more powerful result in the general d-dimensional case. These results naturally

differ, the first being a lot simpler and involving precise case-by-case analysis to obtain the best

constants, whereas the second being applicable more generally.

Chapter 6 will provide a way to construct counter-examples that defeat the IRLS algorithm.

For both fully adaptive, as well as oblivious adversaries, we show that naive initializations of the

IRLS cannot guarantee convergence to the gold model w∗. We include experimental verification

of these examples, as well as provide a method to construct these examples and observe how the

IRLS algorithm fails.

6

Chapter 2

Background

In this chapter, we will cover some basic results and concepts from regression analysis that forms

the basis for this thesis. We shall take a look at the regression problem in detail, specifically the

least squares estimator. We shall also outline the IRLS algorithm and give a brief overview of what

results exist currently. Additionally, we will introduce various adversary models and describe the

challenges in tackling each one.

2.1 Linear Regression

The linear regression problem is one of discovering the “best” linear/affine function that fits a

given set of n data points, i.e. the covariates X = {x1, . . . ,xn} ∈ Rn×d, and the corresponding

set of responses y = {y1, . . . , yn} ∈ Rn. Regression analysis, especially linear regression, finds

applications in several areas of learning and inference, such as learning with bandit information

[1], multilabel learning [34] and matrix completion [18]. In all these areas, the overall problem can

be reduced to (a sequence of) linear regression problems.

For sake of simplicity, we will not consider affine models in our discussion. Affine models can

be easily implemented using linear models by appending a dummy feature/coordinate to all the

covariates. It is common in regression analysis to assume that there exists a gold model w∗ such

that all responses were generated as

yi = 〈w∗,xi〉+ εi, (2.1)

where εi denotes noise in the observed responses. It is common to assume that the noise variables

are generated independently from some fixed distribution, say Gaussian for the OLS model. Given

this, it is common to obtain a point estimate for w∗, say ŵ, using the maximum likelihood or

maximum aposteriori estimators (by incorporating a prior distribution on the model Pprior[w]),

7

2.1. LINEAR REGRESSION

both which result in optimization problems that we describe below. Prediction is performed on a

test covariate xt as ŷt = 〈ŵ,xt〉.

The other alternative, the so-called Bayesian formulation, is to utilize the prior distribution to

obtain a posterior distribution Ppost[w] for w∗ via the Bayes rule as

Ppost[w] = P [w |X,y] ∝ P [y |X,w] · Pprior[w]

Given a test covariate xt, we first obtain the predictive posterior distribution on the response for

the test covariate by conditioning.

Ppred[y |xt] =

∫
P
[
y |xt,w

]
· dPpost[w]

Prediction is then performed by either choosing the mode ŷt = arg maxy∈R Ppred[y |xt] or the ex-

pectation ŷt = Ey∼Ppred [y |xt] of the predictive posterior distribution. For simple cases, such as

when likelihood and prior distances are conjugates, the posterior and predictive posterior distri-

butions are obtainable in closed form. In all other cases, sampling techniques are resorted to, in

order to perform approximate inference.

In this thesis we will concentrate only on point estimates. However, it should be noted that

point estimates for the models obtained using maximum aposteriori techniques can be shown to

correspond to the modes of the corresponding posterior distributions.

2.1.1 Ordinary Least Squares

The ordinary least squares (OLS) estimator discovers a point estimate of the model by solving an

optimization problem involving the squared loss function.

ŵOLS = arg min
w∈Rd

n∑
i=1

(yi − 〈w,xi〉)2,

However, the OLS estimate can also be easily seen to be the maximum likelihood estimate corre-

sponding to the Gaussian likelihood function P [yi |xi,w∗] = N (〈w∗,xi〉 , σ2) ∝ exp
(
− (yi−〈w,xi〉)2

2σ2

)
.

The above objective function is convex (strongly convex if the covariate matrix is well conditioned)

and differentiable, as well as the problem is unconstrained. Thus, all optima must be stationary

points i.e. they must satisfy

∂

∂w

n∑
i=1

(yi − 〈w,xi〉)2 = 0,

which gives us

ŵOLS = (X>X)−1X>y.

8

2.1. LINEAR REGRESSION

The inverse is replaced by the Moore-Penrose pseudoinverse for ill-conditioned covariate matrices.

Given that the OLS uses the squared loss function and the Gaussian likelihood model to measure

the “goodness” of the model parameter we are estimating, it is natural to ask if other loss functions

can be used as well, for instance if other generative models seem more suited to the data at hand.

Indeed, answering this question leads us to the different regression techniques. Below we give some

of the other more popular variants for regression problems.

2.1.2 Ridge regression

While conceptually and algorithmically simple, the OLS relies entirely on the least squares objective

on the measured data to obtain our estimator which can fail in scenarios where either the covariate

matrix is ill conditioned, or when we have far too less data and are at a risk of fitting too closely to

the data. Ridge regression is a popular workaround in these settings. At its core, ride regression

aims to solve a modified objective,

ŵRR = arg min
w∈Rd

n∑
i=1

(yi − 〈w,xi〉)2 + λ ‖w‖22

The ridge regression formulation also corresponds to what is known as the Tikhonov Regularization

technique as applied to the linear regression problem. A unique solution to the above formulation

exists, and the above objective function is strongly convex, irrespective of whether the covariate

matrix is well-conditioned or not. Following the first-order stationarity principle, we get

ŵRR =
(
X>X + λId

)−1
X>y

It is notable that there exists a tradeoff when choosing the value of λ for our objective. A

larger value of λ tends to favor solutions that lie close to the origin (i.e. ‖w‖2 is small), whereas

a smaller value tends to fit better to the data that we have, but at the risk of overfitting.

As with OLS, we may also arrive at the ridge regression formulation in a different way, by

interpreting as the maximum aposteriori estimate with Gaussian likelihood as in the OLS example,

and a Gaussian prior on the models Pprior[w] = N (0, 1
λId) ∝ exp

(
−λ·‖w‖

2
2

2

)
.

2.1.3 LASSO

The LASSO, or Least Absolute Shrinkage and Selection Operator introduced in [29] is a seminal

technique used very widely for sparse recovery and other problems. The LASSO is similar to the

ridge regression estimator. However, whereas ridge regression works with a L2 norm regularization

9

2.2. THE IRLS ALGORITHM

(or alternatively, a Gaussian prior), the LASSO imposes an L1 norm regularization.

ŵLASSO = arg min
w∈Rd

n∑
i=1

(yi − 〈w,xi〉)2 + λ ‖w‖1

The above also corresponds to the maximum aposteriori solution with Gaussian likelihoods and

Laplacian priors i.e. Pprior[w] ∝ exp
(
−λ·‖w‖12

)
. The LASSO does not admit any closed form solu-

tions and the estimate is generally obtained in an iterative fashion, using techniques like subgradient

descent, proximal gradient descent, least-angle regression, and the expectation maximization (EM)

algorithm by exploiting the fact that Laplacian variables possess a moment generating function

identical to those of a scale mixture of normally distributed variables.

In contrast to the ridge regression formulation, a larger value for the regularization parameter

λ in LASSO does not promote setting all coordinates of the parameter w to zero. Instead, because

of how the epigraphs of the L1 norm function look, it promotes setting more and more coordinates

of the parameter w to zero. Formally, we can say that a larger value of λ promotes greater sparsity,

or decreasing the L0 “norm” of the parameter w. This is because the L1 norm acts as a reasonable

proxy for the L0 “norm”. We use the word norm in quotes since the sparsity of a vector is not a

true norm since it violates positive homogeneity (‖c · x‖0 6= |c| · ‖x‖0). Nevertheless this ability to

promote sparsity in a controlled manner allows the LASSO technique to be used in settings like

compressive sensing, where we wish to recover sparse solutions.

2.1.4 Lp norm Regression

Just as we saw different formulations arise by switching different priors, various formulations can

arise by using different likelihood models as well. A prominent one is L1-norm regression which is

widely used in heavy-tailed noise settings. The objective used in this formulation is given below.

ŵL1
= arg min

w∈Rd

n∑
i=1

|yi − 〈w,xi〉|+ λ · r(w),

where r(·) is the regularizer that can be set to the L2, L1 regularizers depending on the application

at hand. The above formulation corresponds to a Laplacian likelihood model i.e. P [yi |xi,w∗] ∝

exp
(
− |yi−〈w,xi〉|2σ

)
. L1 regularization has also been used in dealing with robust regression settings

in the presence of an adversary (for example [32]).

2.2 The IRLS algorithm

The Iteratively Reweighted Least Squares algorithm takes inspiration from the ordinary least

squares method, but augments it in a way that has allowed this method to lend itself well to different

10

2.2. THE IRLS ALGORITHM

settings, with incredible versatility. Indeed, the IRLS algorithm finds application in learning

generalized linear models, robust regression, sparse recovery and many others. The algorithm,

as the name suggests, works by solving multiple modified least squares objectives, in sequence.

Say we observe the covariate matrix X ∈ Rn×d and the response vector y ∈ Rn.

At any time step t, IRLS proceeds by choosing a set of weights, one for each data point, say

sti ≥ 0, i = 1, . . . , n and then solving the following objective

wt+1 = arg min
w∈Rd

n∑
i=1

sti(〈w,xi〉 − yi)
2

(2.2)

Given a new estimate wt+1 for the model, IRLS now sets new weights st+1
i , i = 1, . . . , n (this step

is done in an application-specific manner). It then obtains the next model iterate wt+2 by solving

a weighted least-squares problem, but this time with the new weights st+1
i , i = 1, . . . , n.

Notice that the objectives being solved in the IRLS algorithm are essentially the least squares

objective, but with different data points given different weights. The idea is that as the algorithm

progresses, it identifies certain data points as more valuable for a reliable estimation of the model

parameter. This is a nice property of the IRLS algorithm – if we do indeed identify the points

correctly at a given time step, then we can be assured of progress towards the correct model

parameter in the very next iteration.

We can solve the weighted least squares problems in the IRLS algorithm by using the first-order

stationarity principle, just as we did for the OLS algorithm

wt+1 = arg min
w

n∑
i=1

sti(〈w,xi〉 − yi)
2

= arg min
w

n∑
i=1

(
〈w,

√
stixi〉 −

√
stiyi

)2

This is identical to the OLS estimator, except with the additional scaling (
√
si) for each co-

variate and response. Incorporating this, we can obtain the IRLS solution in the following manner

:

wt+1 =
(
X>StX

)−1
X>Sty

where St = diag(st1, . . . , s
t
n) ∈ Rn×n is a diagonal matrix, with the entries as Stii = sti. We will

discuss the IRLS algorithm in much greater detail in a subsequent chapter, this brief introduction

being given a bit prematurely so that we may discuss relevant works.

11

2.3. ROBUSTNESS IN STATISTICAL ESTIMATION

2.3 Robustness in Statistical Estimation

The robustness of an estimator generally speaks about certain statistical properties that the es-

timator may enjoy with respect to resilience against deviations from modeling assumptions. For

instance, consider the simple problem of mean estimation. We are given a set of samples from a

probability distribution chosen from a certain parameterized family of distributions, say Gaussian.

We know the family (it is Gaussian) but not the parameters (mean, variance). A popular estimator

for the mean of a distribution is simply the empirical mean.

However, this estimator can be “fooled” if the samples are tampered with. Estimators that

are resilient to various forms of such “tampering” form the object of study in the field of robust

statistics. Classical works such as those of [15, 31] helped lay the foundations of this area. A more

thorough treatment to this topic can be found in [16].

For instance, in Hüber’s ε-contamination model, we assume that the samples given to us are

drawn from a distribution of the form (1− ε)Pθ + εQ, where P is the distribution whose mean we

actually wish to estimate, with parameter θ, and Q is some corruption distribution, often heavy

tailed. Here, each sample has a 1− ε probability of being drawn from the “clean” distribution and

an ε probability of being drawn from the corruption distribution Q.

The empirical mean is not resistant to such corruptions and can return inconsistent estimates

i.e. we may not converge to the true mean even in the limit of infinite sample. In fact, the empirical

mean is sensitive to even a single sample being corrupted (since a single corrupted sample can allow

an adversary to modify the estimate to pretty much anything the adversary desires), much less an

ε-fraction of points being corrupted. An improved strategy is that of using the median, which is

a robust alternative. The median is resistant to corruptions to a far larger fraction of points and

cannot be made to arbitrarily deviate by corruptions to a small number of data points.

2.4 Robust Regression

As we have mentioned before, with respect to the generative model for linear regression specified

by 2.1, it is usually assumed that the additive noise is benign. For instance, it is popularly assumed

that the noise is generated stochastically, in an i.i.d. fashion and is unbiased i.e. E [εi] = 0. The

OLS, in particular, assumes that the noise is i.i.d. and normal.

Instances where the above assumptions are violated, for instance due to the noise not being

stochastic, or independent, result in models such as OLS giving poor results. In this thesis, we will

investigate the more challenging robust regression setting where our data need not conform to the

12

2.5. ADVERSARIAL ANALYSIS

above model. To simplify our discussion, we will consider a simple generative model [5, 4, 33]

yi = 〈w∗,xi〉+ bi (2.3)

More compactly, we can write y = Xw∗ + b where b = [b1, . . . , bn]. The corruption vector b is

chosen by the adversary. We discuss various adversary models below. However, we will always

demand that the adversary introduce sparse corruptions ‖b‖0 ≤ n0 = α · n where α ∈ [0, 1) i.e.

only an α fraction of the points are corrupted and for the rest yi = 〈w∗,xi〉. As we discussed in

Chapter 1, the above model may be augmented to include both i.i.d. noise and sparse corruptions.

We also remind the reader that although the term “robust regression” is also often used to denote

approaches towards linear regression with heavy tailed noise, our models, and analyses are distinct.

For any set S ⊆ [n], given any vector v ∈ Rd let vS denote the vector with coordinates i ∈ S

identical to those in v and coordinates j /∈ S set to zero. Similarly, given any matrix X ∈ Rn×d,

let XS denote the matrix with rows i ∈ S identical to those in X and other rows j /∈ S set to

0> ∈ Rd. Our goal can be then stated as solving the following problem

min
w∈Rd,

S⊂[n],|S|=n−n0

‖yS −XSw‖22, (2.4)

where n0 is the number of corrupted points. Thus, our goal is to identify, both the correct model

as well as the location of the uncorrupted points. In the next chapter, we shall survey some state

of the art algorithms that solve this problem. In the chapters following that, we shall show how

the IRLS algorithm performs on the robust regression problem, as well as give a brief overview of

what kind of results we can expect.

2.5 Adversarial analysis

Adversarial analysis is a vital tool to ascertain the robustness properties of an algorithm and has

recently gained prominence in machine learning applications as well, given the interest in identifying

attacks on machine learning algorithms and models. For instance [28] show that contemporary

models for object recognition can be fooled into giving a wrong prediction with as little as one

pixel corruption in the input image. Several other such works exist [3, 14].

Adversary models can be diverse, depending on how much information is available to the

adversary. We will look at three different kinds of adversaries in our analysis of the IRLS algorithm

Oblivious : In this model, the adversary will have to commit to an n0-sparse corruption vector

b before the covariates X or the gold model w∗ are chosen. However, note that the adver-

sary still has knowledge of our algorithm and more importantly, need not conform to any

13

2.5. ADVERSARIAL ANALYSIS

distributions while selecting the (locations of the) corruptions.

Fully adaptive : In this model, the adversary can select b with complete knowlege of X and w∗

in any manner possible. The only restriction is that the corruption vector must be n0-sparse.

Note that such an adversary can implement sign flips of responses etc.

Partly adaptive : In this model, the adversary has to choose the locations of the corruptions

(i.e. supp(b)) before X,w∗ are revealed but the actual corruptions can be decided with full

knowledge of X,w∗. This adversary can also implement sign flips etc.

14

Chapter 3

Related Works

The literature on robust statistics is too vast to be surveyed here. We refer the reader to mono-

graphs such as [17] for more comprehensive surveys. We present below an outline of the state of

the art in robust regression, as well as past results for the IRLS algorithm for different settings.

3.1 Results for Robust Regression

Robust Regression is a very well studied problem, with varying notions of robustness, adversary

models, and algorithmic techniques. Various factors decide the suitability of an algorithm, some

prominent ones being

Speed and Scalability : does the method use a speedy algorithmic technique like hard-thresholding

or gradient descent, or a slower one like LASSO, or still slower ones like cone-programming

that struggle to scale?

Breakdown Point : what fraction of data can the method tolerate being corrupted while still

provably guaranteeing recovery of the gold model?

Assumptions and Applicability : what assumptions does the method require, for instance

assuming oblivious/adaptive adversary, or assuming a certain generative model for the data

covariates?

We refer the reader to Table 3.1 (adapted from [4]) which summarizes the state of the art for

the robust regression problem. For instance, [32] show that exact recovery of the gold model is

possible even as the fraction of corrupted point approaches unity α → 1 as well as when the gold

model w∗ is sparse by solving the following optimization problem.

min
w∈Rd

‖w‖1 + λ · ‖y −X>w‖1,

15

3.1. RESULTS FOR ROBUST REGRESSION

Work Tolerance on α Adversary model Idea
Wright & Ma, [32] α→ 1 Oblivious Relaxation via L1

Chen & Dalalyan, [11] α ≥ Ω(1) Adaptive SOCP
Chen et. al, [9] α ≥ Ω(1√

d
) Adaptive Robust Thresholding

Nguyen & Tran, [22] α→ 1 Oblivious Relaxation via L1

Nguyen & Tran, [23] α→ 1 Oblivious Relaxation via L1

McWillians et. al., [32] α ≥ Ω(1√
d
) Oblivious Weighted subsampling

Bhatia et. al., [5] α ≥ Ω(1) Adaptive Hard Thresholding
Bhatia et. al., [4] α ≥ Ω(1) Oblivious Hard Thresholding

Table 3.1: Summary of different methods for Robust Regression

However, the result requires an oblivious adversary model, i.e. the adversary is compelled to

commit to the corruption vector without any knowledge of the data covariates X or the gold model

w∗. Moreover, stringent assumptions are put on how data covariates are generated. Moreover, the

optimization problem, although convex and similar to the LASSO technique we saw earlier, is still

time consuming to solve for very large datasets due to the objective being non-differentiable, as

well as due to the need to tune the regularization parameter λ very precisely.

The work of [9] also considers recovery of sparse gold models, but they allow distributed cor-

ruptions in the data covariate matrix X. This is more powerful than the corruption model we

have seen where corruption is allowed only in the responses since we can always model corruption

in responses as corruption in covariates but not the other way round. Their technique uses the

notion of a “trimmed” inner product to optimize an objective similar to the LASSO. Although

their corruption model allows for corruption in data covariates, their breakdown point is not very

large and actually diminishes with the dimensionality of the covariates. Moreover, their method

is not consistent and can only recover the gold model upto some constant error i.e. their method

cannot provably approach the gold model even in the limit of infinite data.

Of note are the works of [22, 23, 32], all of which can tolerate a significant amount of corruption.

The work of [4] was the first to propose a technique that guarantees consistent recovery of the gold

model in the presence of (oblivious) adversarial corruptions on some n0 = Ω(n) points and Gaussian

noise on the rest n−n0 points. All these algorithms run in polynomial time, as compared to some

classical techniques such as least median of squares which is an intractable problem in general.

The recent work of [6] present a different setting where they can also tolerate an arbitrary

high fraction of corruptions. Their output setting however, is the list decodable setting where the

algorithm outputs a list of models instead of a single estimate, an accurate estimate of the gold

model being guaranteed to be in the list.

16

3.2. ITERATIVE APPROACHES

Algorithm 1: TORRENT

Data: Covariates X ∈ Rn×d, responses y ∈ Rn, number of corruptions n0

Result: Estimate of parameter w∗

1 S0 = [n]
2 for t = 1, 2, . . . T do

3 wt+1 = arg minw

∑n
i∈St−1 (〈w,xi〉 − yi)2

4 rt+1
i ← |yi − 〈wt+1,xi〉|

5 St+1 ← HT(rt+1, n− n0) //Select n− n0 points with smallest residuals

6 end
Output: wT

3.2 Iterative approaches

In this section, we give a brief overview of a recently proposed algorithm TORRENT [5] for the robust

regression problem. Although the algorithm cannot provably resist a large fraction of data points

being corrupted (the formal guarantees can only show tolerance to about 1% corruption rate), the

method is very fast in practice, can tolerate a fully adaptive adversary, as well as makes very gentle

assumptions regarding covariates and the gold model. Recall the robust regression problem

min
w∈Rd,

S⊂[n],|S|=n−k

‖yS −XSw‖22

As we can see, this is a problem with two unknowns w and S with optimal values as w∗ and

S∗ = [n]−supp(b) respectively. However, note that if someone were to hand us w∗, we could easily

recover the corruption vector as b = y−X>w∗ and hence obtain S∗. Conversely, if someone were

to hand us S∗, we can recover a very good estimate of w∗ by solving a least squares problem using

only points in S∗. This immediately motivates an alternating minimization-based algorithm.

The work of [5] provides an iterative scheme (see Algorithm 1) that generalizes the above

intuition. At each time step, it tries to maintain an active set of points which it believes are

uncorrupted i.e for which it thinks bi = 0. These points are then used to obtain a model estimate

which is then used to update the active set by choosing the data points which have the least residuals

with respect to the model estimate. The authors show that this process provably converges to w∗,

if certain assumptions are satisfied (see [5, Theorem 3]). This work was later improved by the work

of [4], where the authors could show convergence to the gold model, i.e. a consistent estimate,

even when the non-corrupted points contain additive Gaussian noise in their responses.

3.3 IRLS

The IRLS algorithm has been extensively applied to various problem settings for several decades

now. In fact, even the TORRENT algorithm can be seen as an IRLS variant since it sets weights

17

3.3. IRLS

to 0 or 1 depending on whether the point is in the active set or not. In the next section we will

formally show how TORRENT arises naturally as a technique closely related to IRLS. The IRLS

formulation is itself very general, and depending on the form of weights chosen as well as the sort

of loss function we choose to optimize on, we can come up with different algorithms.

Unsurprisingly then, IRLS has been widely used for several problems including robust regression

in the ε contamination model in a line of work that extends back decades [27, 10, 13, 24], sparse

recovery [12, 8, 19, 20]. We refer the reader to [7] for a nice exposition. The recent work of [26]

showed that the IRLS algorithm in certain settings could be viewed as a variant of an optimization

problem that the Physarum slime mold seems to solve in exploring food sources. They show

convergence results for a damped version of the IRLS algorithm in the sparse recovery setting, and

note that establishing global convergence properties still remains a challenge.

As noted in that work, the book [25] also provides a local convergence result, again noting

that establishing global convergence for IRLS is a challenging task. The work of [2] shows that

IRLS may be applied to optimize loss functions popular in robust regression tasks, including robust

M-estimation problems. They present experimental results for applications to rotation averaging,

triangulation and point cloud alignment. However, the theoretical analysis in the work only shows

that the IRLS procedure offers monotonic progress. This cannot be translated into a convergence

or a model recovery bound.

18

Chapter 4

Robust Regression and IRLS

4.1 Introduction

This chapter is the first of a three chapter discussion on the IRLS algorithm and its application to

the robust regression problem. In this chapter we will present an overview of the IRLS algorithm

as applied to the robust regression setting, as well as a variety of experiments run with the IRLS

algorithm to demonstrate its practical usage.

We will show how the IRLS can be derived from alternating optimization applied to a regu-

larized form of the naive least squares problem, as well as an alternative derivation of IRLS as an

instance of the majorization minimization principle. We will also show how IRLS relates to some

other algorithms recently proposed for the robust regression problem. Finally, we will show results

of extensive experiments on IRLS for a variety of problem specifications.

4.2 Overview of the IRLS algorithm

In (2.2), we saw the basic formulation of the IRLS algorithm and commented that different versions

of the algorithm arise from the way we set the values of the weights sti for each data point. For

the robust regression problem, the weights are set as follows.

wt+1 = arg min
w∈Rd

n∑
i=1

sti(〈w,xi〉 − yi)
2
,

sti =
1

|〈wt,xi〉 − yi|

19

4.2. OVERVIEW OF THE IRLS ALGORITHM

Algorithm 2: IRLS for Robust Regression

Data: Covariates X ∈ Rn×d, responses y ∈ Rn
Result: Estimate of parameter w∗

1 w0 ← init
2 for t = 1, 2, . . . T do
3 Set weights sti = 1

|〈wt,xi〉−yi| for i = 1, . . . , n

4 Update model wt+1 = arg minw

∑n
i=1 s

t
i (〈w,xi〉 − yi)2

5 end
Output: wT

Algorithm 2 gives the pseudo-code for the IRLS procedure. Notice that although in Chapter 2

(2.4), we state the goal of robust regression as solving the following problem

min
w∈Rd,

S⊂[n],|S|=n−k

‖yS −XSw‖22

IRLS does not attempt to directly optimize the above objective. Instead of identifying a subset of

points as corrupt, IRLS instead tries to give these points small weight. Note that the way IRLS

assigns weights as inverse of the residuals does seem to effect this goal – data points with large

residuals get downweighted whereas those will very small residuals get large weights.

IRLS can be initialized in a variety of ways. One way to initialize the algorithm is to directly

set the weights for every point, instead of setting a starting point via w0. A popular strategy is to

set s0
i = 1 for all the points. This reduces to solving the usual OLS objective for the first iteration.

Another way to initialize IRLS is to set w0 to be a random vector. As we have seen earlier, the

IRLS updates the model parameter wt can be obtained in closed form at each time step

wt+1 =
(
X>StX

)−1
X>Sty,

where St = diag(st1, . . . , s
t
n) ∈ Rn×n is a diagonal matrix, with the entries as Stii = sti. We may

choose to stop the IRLS algorithm after a sufficient number of steps, specified by the parame-

ter T , or else check if the algorithm makes significant progress. This can be done by checking

‖wt −wt+1‖2 and comparing with an appropriate threshold.

The intuition behind the IRLS algorithm is to utilize good estimates of the model into getting

even better estimates. The weight assigned to each point is inversely proportional to the residual

incurred by the current model estimate on that point. Consequently, if the current model estimate

is close to the gold model w∗, then the residuals on all the uncorrupted points would be low, and

those on the corrupted points would be high. Consequently, the next estimate of the model can be

expected to neglect corrupted points even more and approach the gold model even more closely.

20

4.3. JUSTIFYING IRLS: THE OPTIMIZATION PERSPECTIVE

4.3 Justifying IRLS: The Optimization Perspective

In this section we will provide two independent justifications for the way IRLS performs its updates

– one via Alternating Minimization and the other via Majorization Minimization. Recall that the

IRLS algorithm performs the following updates at each iteration

wt+1 = arg min
w∈Rd

n∑
i=1

sti(〈w,xi〉 − yi)
2
,

sti =
1

|〈wt,xi〉 − yi|

4.3.1 Alternating Minimization

Recall the original robust regression problem

min
w∈Rd,

S⊂[n],|S|=n−k

‖yS −XSw‖22,

and consider the following regularized relaxation

min
w∈Rd,s≥0

n∑
i=1

si (〈w,xi〉 − yi)2
+

n∑
i=1

1

si
,

where the constraint s ≥ 0 is shorthand for si ≥ 0 for all i = 1, . . . , n. Instead of selecting a discrete

subset of data points, we are assigning positive weights to each data point. The regularization 1
si

ensures that we do not blindly set si = 0 to all the points in an effort to minimize the first term

in the objective.

This is a non-convex optimization problem in two variables, the parameter vector w as well as

the per-datapoint weights, s. Alternating minimization [18], which involves alternately fixing one

of the variables and updating the other, is a popular optimization technique for such objectives.

Even though this optimization problem is non-convex, for a fixed model parameter w0, the optima

for s can be found again by applying first-order stationarity condition. Notice that the terms are

actually seperable, so it suffices to optimize on each individual term,

min
si

(
si (〈w0,xi〉 − yi)2

+
1

si

)

which can be found in closed form, as,

si =
1

|〈w0,xi〉 − yi|

which is precisely the IRLS update for the weights. On the other hand, given a fixed set of weights

21

4.3. JUSTIFYING IRLS: THE OPTIMIZATION PERSPECTIVE

s0, it is easy to see that the optimal value of the model parameter can be found out by solving

min
w∈Rd

n∑
i=1

s0
i (〈w,xi〉 − yi)2

+

n∑
i=1

1

si
= min

w∈Rd

n∑
i=1

s0
i (〈w,xi〉 − yi)2

,

which again is exactly what the IRLS does in order to perform model updates. Thus, we see that

IRLS exactly corresponds to performing alternating minimization on a regularized relaxation to

the original robust regression problem.

4.3.2 Majorization Minimization

Consider the following L1 norm optimization problem

min
w∈Rd

n∑
i=1

|〈w,xi〉 − yi|

We recall this formulation from Chapter 2 and commented there that this formulation is often used

in settings with heavy-tailed noise, as well as those with corruptions. It turns out that IRLS can

be alternatively derived as majorization–minimization principle applied to this problem.

The majorization-minimization (MM) principle is a powerful technique that has seen much

success in optimization literature. Put simply, if trying to minimize an objective function f :

Rd → R, given a current iterate wt, the MM principle proceeds in two steps

Majorization : identify a tight majorizer of f at wt, i.e. a function gt : Rd → R such that

1. gt dominates f i.e. for all w ∈ Rd, we have gt(w) ≥ f(w)

2. the domination is tight at wt i.e. we have gt(wt) = f(wt)

Minimization : set the next iterate as wt+1 = arg minw∈Rd gt(w)

MM turns out to assure monotonic progress no matter what function f we choose. This can be

seen easily as we have f(wt+1) ≤ gt(wt+1) ≤ gt(wt) = f(wt). It turns out that if we apply the

MM principle to the function f(w) =
∑n
i=1 |〈w,xi〉 − yi| with the majorizer defined at each step

as follows (it is easy to verify that this is a proper majorizer)

gt(w) =
1

2

n∑
i=1

(〈w,xi〉 − yi)2

|〈wt,xi〉 − yi|
+

1

2

n∑
i=1

|〈wt,xi〉 − yi| ,

then it can be seen that we recover back the IRLS algorithm as an instance of MM. A nice corollary

we get as a result is that IRLS always makes monotonic progress (although not necessarily strictly)

with respect to the L1 norm regression objective f(w) =
∑n
i=1 |〈w,xi〉 − yi|.

22

4.4. RELATION WITH OTHER APPROACHES

4.4 Relation with Other Approaches

While motivating IRLS as an instance of alternating minimization, we introduced the following

objective as a relaxation of the robust regression problem

min
w∈Rd,s≥0

n∑
i=1

si (〈w,xi〉 − yi)2
+

n∑
i=1

1

si
,

where the regularization 1
si

ensures that we do not blindly set si = 0 to all the points in an effort to

minimize the first term in the objective. However, we can prevent such trivial solutions by means

of introducing constraints as well. One possible way to do so is the following

min
w∈Rd,s∈Rn

n∑
i=1

si (〈w,xi〉 − yi)2

n∑
i=1

si = n− n0

si ∈ [0, 1],

where n0 = α · n is the number of corrupted points. The above optimization problem is still a

non-convex one since its objective is not jointly convex in w and s. However, it turns out that if

we attempt to perform alternating minimization with this optimization probelm, then we actually

recover the recently proposed TORRENT algorithm in [5].

Indeed, it is not hard to see that for a given model iterate wt, the optimal value of the parameter

s is found by setting sti = 1 for the n− k points with the least residuals (|〈w,xi〉 − yi|) and setting

sti = 0 for the k points with highest residuals. Thus, the relaxation si ∈ [0, 1] is actually never

exploited, the alternating minimization procedure always sets si ∈ {0, 1}. Note that this implicitly

selects a subset of n− k points St = {i : sti = 1} at each time step.

Thus, it is interesting that alternating minimization when applied to a regularized relaxation

gives IRLS whereas when applied to a constrained relaxation gives TORRENT.

4.5 Real world performance

The IRLS algorithm performed well in general in our experiments, living quite well upto its pop-

ularity for various learning problems. The algorithm usually converged in a few iterations and

is a promising candidate for robust regression. We demonstrate the performance of IRLS in this

section on a few toy settings.

23

4.5. REAL WORLD PERFORMANCE

Experimental setup

Our experiments consist of a variety of synthetically generated datasets with the following model

y = Xw∗ + b,

where y ∈ Rn, X ∈ Rn×d, w∗ ∈ Rd and b ∈ Rn with ‖b‖0 ≤ αn. In our experiments, unless

otherwise mentioned, we drew the covariates, i.e. rows of the matrix X from a centered, isotropic

standard Gaussian distribution, xi ∼ N (0, Id). The gold model w∗ was also drawn from a centered

isotropic Gaussian distribution. We used a standard Intel Core i5-3210M CPU running at 2.50

GHz for all our experiments. All code was written in Python2, using the package numpy.

Oblivious Adversary

Figures 4.1a, 4.1b and 4.1c show the convergence offered by IRLS on datasets with varying levels

of corruptions α = 0.1, 0.25, 0.45, against an oblivious adversary. The locations of the corruptions

were chosen randomly and the corruption values were sampled from a normal distribution. The

graphs show the model recovery error ‖wt −w∗‖2 incurred by successive iterates of IRLS. For each

level of corruption, we repeated the experiment with increasing dataset sizes as well.

Partly Adaptive Adversary

Figure 4.1d shows the performance of IRLS on a partly adaptive adversary, as the fraction of

corrupted data points α is varied. The value of the corruptions (their locations having been chosen

randomly, hence obliviously) were based on an adversarially chosen model w̃ i.e. the adversary

set bi = 〈w̃ −w∗,xi〉 so that the observed response becomes yi = 〈w̃,xi〉 instead of yi = 〈w∗,xi〉.

The experiments were repeated with an increasing number k of such adversarial models. For

example for k = 3, there were 3 adversarial models w̃j , j = 1, 2, 3 and one third of corrupted

points received their corruption as bi = 〈w̃1 −w∗,xi〉, another one third received their corruption

as bi = 〈w̃2 −w∗,xi〉 and so on.

We observe that there does not seem to be much of a correlation, and with the increase in the

number of adversarial models being used to introduce corruption. In fact, we observe that the

IRLS actually does better than with a larger number of adversarial models and k = 1 turns out to

be the most challenging case, possibly because with a larger number of adversarial models, only

the gold model w∗ dominates in terms of sheer numbers whereas with k = 1, the sole adversarial

model can compete with the gold model. Note that with k = 1 and α = 0.5, IRLS does poorly.

However, we have already discussed that in this case, it becomes impossible to distinguish whether

w∗ is the gold model or is w̃ the gold model and hence it is not surprising that IRLS fails.

24

4.5. REAL WORLD PERFORMANCE

0 2 4 6 8 10
Number of iterations

0

5

10

15

20

25

30

35
Er

ro
r i

n
no

rm

Error vs iteration, = 0.1
N = 2000
N = 4000
N = 6000
N = 8000
N = 10000

(a) Estimation error vs iteration with an oblivious
adversary, for varying number of data points at α =
0.1. d = 10

0 2 4 6 8 10
Number of iterations

0

5

10

15

20

25

30

Er
ro

r i
n

no
rm

Error vs iteration, = 0.25
N = 2000
N = 4000
N = 6000
N = 8000
N = 10000

(b) Estimation error vs iteration with an oblivious
adversary, for varying number of data points at α =
0.25. d = 10

0 2 4 6 8 10
Number of iterations

0

5

10

15

20

25

30

35

40

Er
ro

r i
n

no
rm

Error vs iteration, = 0.45
N = 2000
N = 4000
N = 6000
N = 8000
N = 10000

(c) Estimation error vs iteration with an oblivious
adversary, for varying number of data points at α =
0.45. d = 10

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Varying values of

0.0

0.5

1.0

1.5

2.0

Er
ro

r i
n

es
tim

at
io

n
|w

w
* |

2

k = 1
k = 2
k = 3

(d) Estimation error after 100 iterations with an
adaptive adversary, with different number k of ad-
versarial models. N = 1000, d = 10.

Figure 4.1: The first three graphs plot the recovery error ‖wt −w∗‖2 offered by IRLS as a function
of time (iteration) for settings with varying corruption levels α and dataset sizes n when the
adversary is oblivious. The final graph shows the performance when the adversary is partly adaptive
is choosing the corruptions based on adversarially chosen models w̃ i.e. bi = 〈w̃ −w∗,xi〉 so that we
observe yi = 〈w̃,xi〉. The graph shows how IRLS performs when there are varying number of such
adversarially chosen models. For example for k = 3, there are 3 adversarial models w̃j , j = 1, 2, 3
and one third of corrupted points receive their corruption from each one of these models.

0 2 4 6 8 10
Iterations

0

5

10

15

20

25

30

35

|w
*

w
| 2

IRLS vs TORRENT at k = 1, = 0.45
IRLS
TORRENT
OLS

(a) Error in estimation ‖ŵ − w∗‖2 vs number of
iterations, TORRENT vs IRLS. Specifications of input:
N = 10000, d = 10, α = 0.45, k = 1.

0 2 4 6 8 10
Iterations

0

5

10

15

20

25

30

35

40

|w
*

w
| 2

IRLS vs TORRENT at k = 3, = 0.25
IRLS
TORRENT
OLS

(b) Error in estimation ‖ŵ − w∗‖2 vs number of
iterations, TORRENT vs IRLS. Specifications of input:
N = 10000, d = 10, α = 0.25, k = 3.

Figure 4.2: A comparison of IRLS with TORRENT and OLS against a partly adaptive adversary.

25

4.6. PRACTICAL CONCERNS

Figure 4.2 compares IRLS with TORRENT, a method proposed for robust regression in [5],

in the partly adaptive adversary setting (we used the fully corrective version of the algorithm

TORRENT-FC). Both TORRENT as well as IRLS perform comparably, with IRLS having a slight edge

in case there are multiple adversarial models being used to introduce corruptions, and TORRENT

being better when there is a single adversarial model being used to introduce corruptions.

4.6 Practical concerns

The IRLS algorithm does not impose any magnitude restriction on the weights. On careful inspec-

tion, we can see how this is actually not very feasible in practice. If any of the points conforms

perfectly with the model at a particular iteration, then the weight on that point si tends to infin-

ity. This can cause numerical instability given the finite precision arithmetic environments within

which these algorithms are implemented. In fact, we shall see in the following chapters that this

can actually cause IRLS to fail to converge at all. We will also see that modifying the IRLS al-

gorithm slightly by imposing upper bounds on the magnitudes of the weights si is actually a very

desirable step in practice and in theory. In fact, all experimental results we showed in this chapter,

actually use a “truncated” version of IRLS where the weights are capped. However, the cap we

use is really large, of the order of 1012.

26

Chapter 5

Convergence Guarantees for IRLS

In this chapter, we will show convergence results for a truncated version of the IRLS algorithm,

one which, as mentioned before, upper bounds the weights assigned to any data point. We will

begin with an analysis of IRLS in the toy case of unidimensional covariates to gain some insight,

and then generalize this proof to arbitrary dimensions.

Our proofs for both settings will ensure a linear rate of convergence and will require novel

concepts and proof techniques. However, our proofs will only ensure a local convergence bound for

the IRLS algorithm. We will justify this by demonstrating empirically in the next chapter, that if

not initialized properly, IRLS fails to demonstrate a linear rate of convergence.

5.1 Convergence Analysis for Unidimensional Covariates

Recall that the generative model in the robust regression setting generates the responses as

yi = w∗ · xi + bi,

where the corruption is introduced, i.e. bi 6= 0, for at most n0 = α · n data points. Note that we

have used a scalar notation w∗, xi for the gold model and covariates instead of the usual vector

notation since we are in a unidimensional setting at the moment. Let us call the set of upted points

as G = {i : bi = 0} the set of corrupted points as B = {i : bi 6= 0}. For sake of simplicity, we will

abuse notation and let B,G respectively, denote the sizes of these sets as well. Let us also revisit

the IRLS update step, but with truncation put in

wt+1 = arg min
w

n∑
i=1

sti(〈w, xi〉 − yi)
2

sti = min

{
1

|〈wt, xi〉 − yi|
,

1

ε

}

27

5.1. CONVERGENCE ANALYSIS FOR UNIDIMENSIONAL COVARIATES

Note that we have specified the truncation as 1
ε . Let us denote ∆t = wt−w∗ be the model discrep-

ancy in the t-th iterate of the algorithm. For the following analysis, we will also further partition

the point sets G and B according to whether their weights were truncated or not. Specifically, we

will denote GT =
{
i ∈ G : sti = 1

ε

}
, GN = G\GT as well as BT =

{
i ∈ B : sti = 1

ε

}
, BN = B\BT .

We will additionally assume that all covariates satisfy |xi| ≤ 1. We note that this is without

much loss of generality but will simplify our arguments and help us gain intuition before we move

on the multi-dimensional analysis.

As before, applying the first order optimality principle gives us wt+1 = A
B where

B =

n∑
i=1

x2
i

sti
=
∑
i∈GN

|xi|
|∆t|

+
∑
i∈BN

x2
i

|xi ·∆t − bi|
+

∑
i∈GT∪BT

x2
i

ε

=
1

|∆t|

(∑
i∈GN

|xi|+
∑
i∈BN

x2
i |∆t|

|xi ·∆t − bi|
+

∑
i∈GT∪BT

x2
i |∆t|
ε

)

A =

n∑
i=1

xiyi
sti

= w∗ ·B +
∑
i∈B

xibi
sti

= w∗ ·B +
∑
i∈BN

xibi
|xi ·∆t − bi|

+
∑
i∈BT

xibi
ε

where we substituted yi = w∗ · xi + bi for expanding both A and B, and did some elementary

manipulations. The above gives us

|∆t+1| ≤ |∆t| ·
∑
i∈BN

|xibi|
|xi·∆t−bi| +

∑
i∈BT

|xibi|
ε∑

i∈GN |xi|+
∑
i∈BN

x2
i |∆t|

|xi·∆t−bi| +
∑
i∈GT∪BT

x2
i |∆t|
ε

=: |∆t| ·
P

Q
.

Now, for any point i ∈ BT , we have |yi − w∗ · xi| ≤ ε which gives us ε ≥ |bi − xi ·∆t| ≥ |bi| −

|xi ·∆t|. This allows us to bound |bi| ≤ ε + |xi ·∆t| i.e. |xibi|
ε ≤ |xi| + x2

i |∆t|
ε . Moreover, for

i ∈ B, in particular any i ∈ BN , we have |bi| ≤ |bi − xi∆t| + |xi∆t| which gives us |xibi| ≤

|xi| |bi − xi∆t|+ x2
i |∆t|. These put together allow us to bound

P ≤
∑
i∈B
|xi|+

∑
i∈BN

x2
i |∆t|

|xi ·∆t − bi|
+
∑
i∈BT

x2
i |∆t|
ε

,

whereas since all covariates satisfy |xi| ≤ 1, we have |xi| ≥ x2
i for any i ∈ [n], and in particular

for any i ∈ GN . Moreover, we also assume |∆| ≥ ε since we would anyway be unable to ensure a

much closer convergence with truncated weights. Both these together give us

Q ≥
∑
i∈G

x2
i +

∑
i∈BN

x2
i |∆t|

|xi ·∆t − bi|
+
∑
i∈BT

x2
i |∆t|
ε

At this point we notice that if a ≤ b and c ≤ d then a+c
b+c ≤

a+d
b+d . Assuming

∑
i∈B |xi| ≤

∑
i∈G x

2
i

(which is something that holds for a wide variety of sub-Gaussian distributions whenever |B| / |G|

28

5.2. A FEW PRELIMINARIES

is small enough i.e. α is a sufficient small constant), lets us establish, upon observing that for all

i ∈ BN so we have |xi ·∆t − bi| ≥ ε,

|∆t+1| ≤ |∆t| ·
∑
i∈B |xi|+

∑
i∈B

x2
i |∆t|
ε∑

i∈G x
2
i +

∑
i∈B

x2
i |∆t|
ε

≤ |∆t| ·
∑
i∈B |xi|+

∑
i∈B

x2
i |∆t|
ε∑n

i=1 x
2
i

Given the above, we can now state our convergence result for IRLS.

Theorem 5.1.1 (IRLS convergence - unidimensional). Let the (unidimensional) covariates pre-

sented to the IRLS algorithm satisfy |xi| ≤ 1 for all i ∈ [n]. Also, for any set S ⊂ [n], denote

aS :=
∑
i∈S |xi| and sS :=

∑
i∈S x

2
i . Then if the covariates additionally satisfy aB ≤ sG as well

as if IRLS is initialized at a model w0 so that |∆0| = |w0 − w∗| <
s[n]−aB
sB

· ε, then IRLS offers

|wT − w∗| ≤ ε after atmost T = O
(
log 1

ε

)
many iterations.

Note that the above is firmly a local convergence result. The next chapter will justify this by

showing that unless properly initialized, IRLS may fail to demonstrate a linear rate of convergence.

We note that if the covariates are drawn from a sub-Gaussian distribution with support restricted

to the interval [−1, 1], then we may expect sS , aS = Θ(|S|) for S = B,G, [n] since the adversary is

partially oblivious and hence is unable to choose the support of the corrupted points.

Thus, aB ≤ sG would be satisfied whenever B
G is small enough i.e. the corruption rate α is a

sufficient small constant. Also note that the initialization expected is of the form |w0 − w∗| < G
B ε

whereas a model satisfying |wT − w∗| ≤ ε is guaranteed. This implies that the procedure is able

to reduce the distance to the gold model by a factor of B
G .

5.2 A Few Preliminaries

In the previous section we saw a local convergence guarantee for IRLS in the unidimensional case.

The analysis, although toy and not extendable in its form, gave us much insight into how IRLS

can be analyzed. More specifically, it showed that if analyzed locally, IRLS is capable of bringing

the model closer to the gold model by a constant factor.

Ideally, such a result can be bootstrapped, with IRLS being run in stages, with each stage

bringing the model closer to the gold by another constant factor. We will briefly discuss such

schemes in Chapter 7. However, for now, our goal is to establish a local convergence bound for

IRLS in the more realistic multidimensional setting. For this we require a more rigorous background

in the theory of random matrices. We present the relevant concepts and results below.

We denote the unit sphere in d dimensions using Sd−1. For any γ ∈ (0, 1], we let Sγ =

{S ⊂ [n] : |S| = γ · n} denote the set of all subsets of size γ · n. For any matrix X ∈ Rn×d, and

set S ⊂ [n], we let XS denote the n× d matrix with rows i ∈ S identical to those in X and rows

29

5.3. CONVERGENCE ANALYSIS FOR MULTIDIMENSIONAL COVARIATES

j /∈ S filled with zero vectors. Also, for any vector v ∈ Rn, we use the notation vS to denote

the n-dimensional vector with coordinates i ∈ S identical to those in v but coordinates j /∈ S

filled with zeros. We use λmin(X) and λmax(X) to denote, respectively, the smallest and largest

eigenvalues of a square symmetric matrix X. We now state two properties, namely, Subset Strong

Convexity and Subset Strong Smoothness that were introduced in [5].

Definition 5.2.1 (Subset Strong Convexity and Smoothness [5]). A matrix X ∈ Rn×d is said

to satisfy the Subset Strong Convexity (SSC) (resp. Subset Strong Smoothness (SSS)) property at

level γ with strong convexity constant λγ (resp. strong smoothness constant Λγ) if it satisfies,

λγ ≤ min
S∈Sγ

λmin

(
X>S XS

)
≤ max
S∈Sγ

λmax

(
X>S XS

)
≤ Λγ

However, the above property was designed for the TORRENT algorithm which, as we discussed

in Chapter 3, worked with different subsets of data points. For analyzing IRLS, which instead sets

weights to all data points, we introduce a more generalized property in this thesis.

Definition 5.2.2 (Weighted Strong Convexity and Smoothness). A matrix X ∈ Rn×d is said to

satisfy the Weighted Strong Convexity (WSC) (resp. Weighted Strong Smoothness (WSS)) property

with respect to a diagonal matrix S with non-negative entries with strong convexity constant λ(S)

(resp. strong smoothness constant Λ(S)), if it satisfies,

λ(S) ≤ λmin

(
X>SX

)
≤ λmax

(
X>SX

)
≤ Λ(S)

5.3 Convergence Analysis for Multidimensional Covariates

We will denote X = [x1, . . . ,xn]> ∈ Rn×d as the covariate matrix, w∗ as the gold model, b ∈ Rn

as the n0 = α · n-sparse vector of corruptions and y = Xw∗ + b ∈ Rn as the (corrupted) response

vector. Let S = diag(s1, s2, . . . , sn) be the weights give to data points i = 1, . . . , n. Recall that

the truncated IRLS algorithm considers the current iterate wt, obtains the corresponding residual

ri = yi − 〈wt,xi〉, sets the weights as si = min
{

1
|ri| ,M

}
, and obtains the next iterate as

wt+1 = (X>StX)−1XSty = w∗ + (X>StX)−1X>Stb

Let B = supp(b) be the coordinates of the corrupted data points and G = [n] − B be the set of

uncorrupted points. For sake of simplicity, we will abuse notation and let B,G respectively, denote

the sizes of these sets as well. Then note that we have X>Stb = X>BS
t
BbB . We will assume that

the covariate matrix satisfies the WSC/WSS properties as mentioned above with respect to the

weight matrix St i.e. λ(St) ≤ λmin(X>StX) ≤ λmax(X>StX) ≤ Λ(St) for all time steps t.

30

5.3. CONVERGENCE ANALYSIS FOR MULTIDIMENSIONAL COVARIATES

Our goal would be to obtain an upper bound on the quantity
∥∥X>Stb∥∥

2
since we have

‖wt+1 −w∗‖2 ≤
∥∥X>Stb∥∥

2

λ(St)

Note that IRLS (ignoring truncation for a moment) sets si = 1
|ri| and so when w = w∗ then

rB = b and hence StBb is a vector whose entries are ±1. This means that at w = w∗ we have∥∥X>Stb∥∥
2
≈ O (B). We will next show how to ensure that IRLS approaches a similar value.

Let us r+ denote the residuals offered by wt+1 and let S+ denote the diagonal matrix of weights

we assign as a result, using the above procedure. Then we have

r+ = b−X(X>StX)−1X>Stb

Multiplying both sides with X>BS
+
B gives us

X>BS
+
Br+ = X>BS

+
Br+

B

= X>BS
+
Bb−X>BS+

BX(X>StX)−1X>Stb

= X>S+b−X>BS+
BX

>
B (X>StX)−1X>Stb,

where the second step holds since supp(b) = B. Now, had we not performed truncation of the

weights, we would have had S+r+ =: η = sign(r+) i.e. it would have been a sign vector. Thus,

we would have had
∥∥X>BS+

Br+
B

∥∥2

2
=
∥∥X>BηB∥∥2

2
≤ ‖ηB‖

2
2 ·Λ(IB) ≤ B ·Λ(IB) where I is the identity

matrix. However, notice that even after truncation, we are still assured that siri ≤ 1 which ensures

that we still have
∥∥X>BS+

Br+
B

∥∥2

2
≤ B · Λ(IB). This gives us

∥∥X>S+b
∥∥2

2
≤ B · Λ(IB)−

∥∥X>BS+
BXB(X>StX)−1X>Stb

∥∥2

2
+ 2 · b>S+XX>BS

+
BXB(X>StX)−1X>Stb

≤ B · Λ(IB) + 2 · b>S+XX>BS
+
BXB(X>StX)−1X>Stb

≤ B · Λ(IB) +
2 · Λ(S+

B)

λ(St)

∥∥X>S+b
∥∥

2

∥∥X>Stb∥∥
2

Solving the quadratic equation yeilds

∥∥X>S+b
∥∥

2
≤
√
B · Λ(IB) +

2 · Λ(S+
B)

λ(St)

∥∥X>Stb∥∥
2

The above result shows that whenever we have
2·Λ(S+

B)

λ(St) < 1, we make substantial progress in

reducing the quantity
∥∥X>Stb∥∥

2
towards

√
B · Λ(IB). Now the subset strong condition from [5]

for subGaussian covariates ensures with high probability that Λ(IB) ≤
√
B + ·o(n) which in turn

31

5.3. CONVERGENCE ANALYSIS FOR MULTIDIMENSIONAL COVARIATES

ensures that
√
B · Λ(IB) ≤

√
B2 +B · o(n) = O (B) (recall that we earlier agreed that this is its

lowest value possible). Also note that due to truncation, we have Λ(S+
B) ≤ Λ(M · IB) ≤ O (MB)

by a similar argument as before. In the following we will assume that the data covariates satisfy

λ(S) ≥ Ω (trace(S))− o(n). Now, we can have either of two cases

1. Case 1: we have si = M for at least G/2 of the uncorrupted points. In this case we have

trace(S) ≥ GM/2. Thus, we get, ignoring constants,

2 · Λ(M · IB)

λ(S)
≤ 2 · (MB + o(n))

GM/2− o(n)
≤ C1B

G
,

for some constant C1 where the last step holds for large enough n. In this case, whenever

B/G < 1
2C1

, we have the above quantity less than 1/2.

2. Case 2: we have si = 1
|ri| for at least G/2 of the uncorrupted points. Call this set of points

Gm. These are good points but with large residuals. In this case, we have by a repeated

application of Jensen’s inequality,

trace(S) ≥
∑
i∈G

si =
∑
i∈G

min

{
1

|ri|
,M

}
≥
∑
i∈Gm

1

|ri|

≥ Gm
1
Gm

∑
i∈Gm

|ri|
≥ Gm

√
Gm

‖rGm
‖2
≥ G

√
G

2
√

2 ‖rG‖2

bG = 0, means rG = X(w∗ −w) i.e. ‖rG‖2 ≤ ‖w −w∗‖2 ·
√

Λ(IG) ≤ ‖w −w∗‖2 ·
√

2G i.e.

2 · Λ(M · IB)

λ(S)
≤ 2 · (MB + o(n))

G
4·‖w−w∗‖2

− o(n)
≤
C2MB ‖w −w∗‖2

G

Assuming an initialization
∥∥w0 −w∗

∥∥
2
≤ G

2C2BM
, the above quantity is less that 1/2.

The above arguments show that we can ensure
∥∥X>Stb∥∥

2
≤ C3B, for some constant C3 > 0

within O (logB) steps of the algorithm. Once this has happened, we come to the final stages of

the algorithm. From now on we assume that the current iterate w yields residuals r and weights

St, such that
∥∥X>Stb∥∥

2
≤ C3B. Now one of two things can happen

1. Case 1: we have si = M for at least G/2 of the uncorrupted points. In this case we have

λ(S) ≥ Ω (GM/2)− o(n) and get,

∥∥w+ −w∗
∥∥

2
≤
∥∥X>Stb∥∥

2

λ(S)
≤ C4B

GM

This is the final guarantee we have to offer. With truncated weights, IRLS can offer no

significantly better convergence. However, note that whereas we assumed an initialization

32

5.3. CONVERGENCE ANALYSIS FOR MULTIDIMENSIONAL COVARIATES

∥∥w0 −w∗
∥∥

2
≤ G

2C2BM
in the discussion above, we are thereafter assuring that we will con-

verge to ‖w+ −w∗‖2 ≤
C4B
GM . Thus, we improved the distance to the gold model by a factor

of O
(
G
B

)2
.

2. Case 2: we have si = 1
|ri| for at least G/2 of the uncorrupted points. In this case we have,

as before,

λ(S) ≥ Ω

(
G

‖w −w∗‖2

)
− o(n) ≥ Ω

(
G

‖w −w∗‖2

)
,

for large enough n. The above assures us that

∥∥w+ −w∗
∥∥

2
≤ C5B

G
‖w −w∗‖2 ,

for some constant C5 > 0. This means that if B/G < 1
2C5

then we have ‖w+ −w∗‖2 ≤
1
2 ‖w −w∗‖2, i.e. we now have a linear rate of convergence to the optimum.

The above shows that truncated IRLS keeps decreasing ‖w −w∗‖2 at a linear rate until it can

ensure ‖w −w∗‖2 ≤
C4B
GM . We can now state our convergence result for IRLS.

Theorem 5.3.1 (IRLS convergence - multidimensional). Let the covariates presented to the

IRLS algorithm satisfy the subset strong smoothness property for the subset of corrupted points

B with λmax(X>S XS) ≤ O (|S|) for S = G,B ⊂ [n] and the weighted strong convexity prop-

erty as λmin(X>SX) ≥ Ω (trace(S)) − o(n). Then if IRLS is intialized at a point w0 satisfying∥∥w0 −w∗
∥∥

2
≤ G

2C2BM
for some small enough constant C2 and if B/G ≤ C6 for some small enough

constant C6, then the truncated IRLS algorithm offers an iterate wT satisfying
∥∥wT −w∗

∥∥
2
≤ C4B

GM

for some constant C4 after atmost T = O
(
log 1

ε

)
many iterations.

Note that the above is also a local convergence result. The next chapter will justify this by

showing that unless properly initialized, IRLS may fail to demonstrate a linear rate of convergence

in higher dimensional covariates as well. However, note that whereas IRLS assumes an initialization∥∥w0 −w∗
∥∥

2
≤ O

(
G
BM

)
, it ensures ‖w+ −w∗‖2 ≤ O

(
B
GM

)
. Thus, the algorithm improves the

distance to the gold model by a factor of O
(
G
B

)2
.

The work of [5] establishes the SSS property required by the above result for covariates drawn

from a variety of subGaussian distributions. A useful result in establishing the WSC property for

random matrices is the following Matrix Chernoff bound by [30]. The text itself is a good source

of such tail inequalities for random matrices.

Theorem 5.3.2 (Matrix Chernoff [30]). Let X1, . . . XK be a set of independent, random Hermitian

matrices of common dimension d×d. Assume that, 0 ≤ λmin(Xk) ≤ λmax(Xk) ≤ L for each index

k and define Y =
∑
kXk. Also define the minimum and maximum eigenvalues of the expectation

33

5.3. CONVERGENCE ANALYSIS FOR MULTIDIMENSIONAL COVARIATES

EY as µmin = λmin

∑
k EXk and µmax = λmax

∑
k EXk respectively. Then for any θ > 0, we have

P [λmin(Y) ≤ (1− ε)µmin] ≤ d

[
e−ε

(1− ε)1−ε

]µmin/L

P [λmax(Y) ≥ (1 + ε)µmax] ≤ d

[
eε

(1 + ε)
1+ε

]µmax/L

Lemma 5.3.3. For covariates drawn from an isotropic distribution i.e. E
[
xw>

]
= Id, we have

λ(S) ≥ trace(S)− o(n) with high probability.

Proof. For a fixed S, the result follows from a straightfoward application of the above inequality by

taking Xi = si · xix>i and noting that 1) we always invoke this result in settings where trace(S) ≥

Ω (BM) as in Case 1 we have trace(S) ≥ GM/2 and in Case 2 we have trace(S) ≥ G/ ‖w −w∗‖2
and ‖w −w∗‖2 ≤ B/GM , 2) we may use L = M since that is the upper bound on the weight any

point can receive in truncated IRLS, and 3) due to the isotropic nature of our covariates, we have

µmin = µmax = trace(S), we get, for any value of ε ≥ 1
8 ,

P [λmin(Y) ≤ (1− ε) · trace(S)] ≤ d

[
e−ε

(1− ε)1−ε

]B
≤ d exp(−Ω (n))

We may even establish a uniform convergence bound over all such matrices by applying an

ε-net argument. Notice that if we have two diagonal weight matrices such that S1 = diag(s1) and

S2 = diag(s2) and ‖s1 − s2‖2 ≤ ε, then we have for any unit vector v ∈ Rd,

∣∣v>XS1X
>v − v>XS2X

>v
∣∣ =

∣∣∣∣∣
n∑
i=1

(s1
i − s2

i) 〈v,xi〉
2

∣∣∣∣∣ ≤ ∥∥s1 − s2
∥∥

2

√√√√ n∑
i=1

〈v,xi〉4

≤
∥∥s1 − s2

∥∥
2

(
n∑
i=1

〈v,xi〉2
)
≤ ε ‖Xv‖22 ≤ ε ‖X‖

2
2 ,

which implies that
∣∣λmin(XS1X

>)− λmin(XS2X
>)
∣∣ ≤ ε ‖X‖22. Taking a union bound over an

ε-net with ε ≤ α/4 over all normalized weight vectors (i.e. s ∈ Rn : ‖s‖1 ≤ 1) then finishes the

argument since the volume of the unit L1 ball is O
(

2n

n!

)
to get

P
[
∃t : trace(St) ≥ BM,λmin(XStX>) ≤ (1− 2ε) · trace(St)

]
≤ C72nd

n!

[
e−ε

(1− ε)1−ε

]B
≤ d exp(−Ω (n))

34

Chapter 6

Failure Analysis for IRLS

In this section, we argue using experimental results, why we believe global convergence results for

the IRLS algorithm may not be feasible. We present a series of counterexamples that cause the

IRLS algorithm to fail if not initialized properly. While these results are negative, they also let us

understand the key drawbacks of IRLS, and what measures can be taken to work around them.

6.1 The Flaw in the IRLS Methodology

Recall that the IRLS algorithm performs the following steps in each iteration

wt+1 = arg min
w

n∑
i=1

sti(〈w,xi〉 − yi)
2

sti = (|〈wt,xi〉 − yi|)−1

The algorithm itself does not impose any restriction on the weights sti. As we mentioned before,

in our experiments, we capped the weights at an exaggerated limit ≈ 1012 to avoid divide-by-zero

errors. However, this still leaves it possible (and as we also observed in practice) that some weights

become extremely large, and drown out the weights on the rest of the points when it comes to

solving the reweighted objective at each iteration. Although this is a happy scenario if these large

weights are being placed on uncorrupted points, the same becomes a problem if large weights are

placed on corrupted points, which can happen, for instance if IRLS is not initialized properly.

In particular, if IRLS at time t has a model wt such that for a particular point, |〈w,xi〉− yi| =

ε ≈ 0, then the resultant weight on that particular point will blow up for the next time step. Given

this, if an adaptive adversary chooses an adversarial model w̃ and sets bi = 〈w̃ −w∗,xi〉 for all

the corrupted data points, and if IRLS ever approaches w̃ during its iterations, due to improper

initialization or otherwise, then weights on all the corrupted points will blow up whereas those on

35

6.2. FAILURE CASES FOR IRLS

Table 6.1: Notation used in figures depicting failure cases for IRLS

Symbol Interpretation
w̃ Adversarial models that generate responses for the corrupted points
w∗ True parameter that IRLS seeks to recover

wIRLS Parameter that IRLS converges to (at convergence criteria)
α Fraction of points that are allowed to be corrupted
k Number of adversarial models

the clean points will stay bounded. Thus, IRLS can actually start converging to w̃, as a vicious

cycle will set in, with the weights on the corrupted points increasing with each iteration.

One thing to note is that if we artificially restrict the smallest possible residue any point can

obtain during an execution of IRLS (which is equivalent to capping the largest weight any point

can receive), then this modified form of IRLS actually converges in practice, but often after several

iterations and in the previous chapter we saw that such a technique actually offers a convergence

guarantee, albeit a local convergence guarantee, and that too to an error level that depends on the

level of the capping. In our experiments, we analyze the performance of IRLS at the end of the

first 20-25 iterations. This is generally accepted as a reasonable running time for any algorithm

that exhibits linear rate of convergence, to converge to its final solution. In our experiments, we

observe that upon running for a long enough time, IRLS almost always converged, but that there

was no clear procedure to choose how many iterations to run the IRLS procedure.

6.2 Failure cases for IRLS

For sake of visual inspection, we will present our counter examples where the IRLS algorithm fails

to converge for 1 and 2 dimensional covariates. We will work with a partly oblivious adversary,

one that does not get to control which points get corrupted but that can decide on the corruption

values on the chosen points. In all cases, the adversary will initially (before data covariates are

generated) identify one or more adversarial models w̃j , j = 1, 2, . . . , k where k will denote the

number of such adversarial models.

When deciding the corruption value for a certain data point i that was designated as corrupted,

our adversary will simply pick up one of these adversarial models at random, say w̃ji and set the

corruption value as bi = 〈w̃ji −w∗,xi〉 so that the response observed on this data point is simply

yi = 〈w̃ji ,xi〉. Note that such corruptions can be used to flip the sign of the response (by setting

w̃ = −2w∗, or in general scale the response by a factor of c (by setting w̃ = (c + 1) · w∗). See

Table 6.1 for notation used in the experiments.

The first set of results in Figure 6.1 consider unidimensional covariates (all experiments used

10000 data points). The figures on the left depict the covariate and response pairs in a 2D plot.

The red points indicate corrupted points and the green points indicate clean points. Since our

36

6.2. FAILURE CASES FOR IRLS

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
xi

6

4

2

0

2

4

6

8

y i

k = 1, = 0.3
Clean points
Corrupted points

(a) Input points, at corruption fraction of α = 0.3
and number of adversarial models k = 1.

20 15 10 5 0 5 10 15 20
Initialization of IRLS

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Er
ro

r i
n

no
rm

k = 1, = 0.3
|wirls w * |2
w *

w

(b) Model recovery error |wirls −w∗| versus initial-
ization of IRLS (w0).

0.5 0.0 0.5 1.0
xi

6

4

2

0

2

4

6

8

10

y i

k = 2, = 0.4
Clean points
Corrupted points

(c) Input points, at corruption fraction of α = 0.4
and number of adversarial models k = 2.

20 15 10 5 0 5 10 15 20
Initialization of IRLS

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r i
n

no
rm

k = 2, = 0.4
|wirls w * |2
w *

w

(d) Model recovery error |wirls −w∗| versus initial-
ization of IRLS (w0).

0.5 0.0 0.5 1.0
xi

6

4

2

0

2

4

6

8

10

y i

k = 3, = 0.4
Clean points
Corrupted points

(e) Input points, at corruption fraction of α = 0.4
and number of adversarial models k = 3.

20 15 10 5 0 5 10 15 20
Initialization of IRLS

0.00

0.05

0.10

0.15

0.20

Er
ro

r i
n

no
rm

k = 3, = 0.4
|wirls w * |2
w *

w

(f) Model recovery error |wirls −w∗| versus initial-
ization of IRLS (w0).

Figure 6.1: IRLS fails to converge to gold model with unidimensional covariates against a partly
adaptive adversary using adversarial models w̃j to introduce corruptions as bi = 〈w̃j −w∗,xi〉
(n = 10000). Figures in the three rows correspond, respectively, to adversaries that used 1, 2 and
3 adversarial models to introduce corruptions. IRLS was run for 20 iterations in all experiments.

adversaries were allowed to utilize more than one adversarial model to introduce corruptions, we

can notice more than one linear model fitting the red points in some of the graphs.

We see how the presence of the adversary causes the IRLS algorithm to incur a large model

recovery error even after 20 iterations, if the algorithm is not initialized properly. In the figures on

the right-hand side, the x-axis represents the location where IRLS was initialized and the y-axis

indicates the model recovery error incurred by IRLS after 20 iterations from the given initialization.

37

6.2. FAILURE CASES FOR IRLS

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X coordinate

20

15

10

5

0

5

10

15

20

Y
co

or
di

na
te

Failure / Success vs initialization of IRLS algorithm
Success
Failure
True model
Adversarial model

(a) Initialization of IRLS vs success or failure. n =
1000, α = 0.3, single adversarial model.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X coordinate

20

15

10

5

0

5

10

15

20

Y
co

or
di

na
te

Failure / Success vs initialization of IRLS algorithm
Success
Failure
True model
Adversarial model

(b) Initialization of IRLS vs success or failure. n =
1000, α = 0.45, 3 adversarial models.

Figure 6.2: IRLS fails to converge to gold model with 2D covariates against a partly adaptive
adversary using adversarial models w̃j to introduce corruptions as bi = 〈w̃j −w∗,xi〉. IRLS was
run for 25 iterations in all experiments. An initialization point is colored green if IRLS ensures
‖wIRLS −w∗‖2 ≤ 10−5 within 25 iterations and is colored red otherwise.

The presence of multiple adversarial models further degrades the performance of IRLS. In fact,

as Figures 6.1d and 6.1f indicate, IRLS ends up converging to multiple local optima depending on

where exactly it was initialized. We observe that in general, IRLS incurs a large error if initialized

close to one of the adversarial models, we notice in all graphs that it performs poorly if initialized

at some other specific locations as well. For instance, in Figure 6.1f, we can see that although

there are only 3 adversarial models, there appear to be as many as 8 points where, if IRLS is

initialized, gives poor convergence. We found that initialization at these spuriously bad points is

still redeemable by running IRLS for several more iterations. However, initialization at or close to

one of the adversarial models continues to cause IRLS to perform poorly.

Figure 6.2 shows instances where IRLS fails to converge to the gold model against a partially

adaptive adversary on 2D covariates. The figures show a point plot with each point indicating an

initialization point for IRLS and that point colored red if IRLS failed to assure ‖wIRLS −w∗‖2 ≤

10−5 within 25 iterations, and green if IRLS did manage to assure a reasonably close estimate of

the gold model within those many iterations.

We noted in our experiments that it was easier to lure IRLS into poor performance if the

adversarial models were numerous, as well as if the adversarial models had smaller L2 norms

compared to the gold model, possibly since IRLS first attempted to converge to models with

smaller norms which nevertheless fit some of the points. We also note that if we ran IRLS for

several more iterations then more and more initializations start converging to the gold model.

However, these solutions converged at a rather slow rate.

38

Chapter 7

Conclusion and Future Direction

In this thesis, we undertook a case study of the popular IRLS algorithm for the robust regression

problem. We saw how the algorithm can be variously seen as performing alternating minimiza-

tion, or majorization minimization. We saw that the algorithm relates to other robust regression

algorithms proposed recently such as TORRENT. We performed an empirical evaluation of the algo-

rithm and although, we found the algorithm to succeed in general and offer admirable convergence

rates, we also identified failure cases, which we demonstrated explicitly in experiments. To avoid

these failure cases, we offered a local convergence guarantee for a truncated version of the algorithm

which puts an upper limit on the magnitude of the weights given to any data point. Although these

investigations give us insight into the IRLS algorithm, there are several avenues to be explored.

7.1 Regularized IRLS

It is notable that we have considered only unregularized versions of IRLS in this work, relying

instead on the data offering (weighted) strong convexity which itself acts as a regularizer. However,

in ill-conditioned settings, an explicit regularizer would help. It would be interesting to explore

the convergence properties of L1/L2 regularized IRLS formulations.

7.2 Truncated IRLS

In experiments, we observed that in the partly adaptive adversary settings, unless the IRLS pro-

cedure was initialized extremely close to one of the adversarially chosen models w̃j , the algorithm

did converge to the gold model w∗, although it did take a very large number of iterations to do

so at times. This motivated us to analyze the IRLS algorithm for a local convergence guarantee

which we were able to show for a truncated version of the algorithm where the weights are capped.

However, this truncation comes at a price – it seems to put a limit on how closely IRLS can

39

7.3. IRLS FOR SPARSE RECOVERY

approach the gold model, as our theoretical guarantees also suggest. Thus, if we set a cap that

is too small, then we also incur a commensurately large model estimation error. Given this, it is

tempting to investigate a scheme which iteratively increases the cap, starting with a modest cap.

We believe such an algorithm should be able to exploit the convergence properties of the capped

IRLS algorithm, as well as have fine control on the extra error incurred due to truncation, and

may indeed offer global convergence results.

7.3 IRLS for Sparse Recovery

The IRLS algorithm is actually very popular for the sparse recovery problem [12] where the goal is

to perform linear regression to recover a model parameter that is known to be sparse (or its best

sparse approximation). Given our progress in analyzing IRLS for the robust regression problem

which can also be seen as a sparse recovery problem, but with sparsity on the data side rather than

the model side (recall that the corruption vector b is sparse), it is tempting to explore if similar

techniques can be used to analyze IRLS for sparse recovery as well, especially for Lp regularized

problems where p < 1. Another nice goal is to attempt high dimensional robust regression with

IRLS which several previous works have attempted [9, 5, 32, 22, 23] but using different techniques.

7.4 Gradient IRLS

In its current form, IRLS is a computationally expensive algorithm, having to invert a d × d

matrix at each iteration, in order to perform the weighted least squares computation. Although

conjugate gradient methods can reduce this cost somewhat, this may still be expensive, especially

since the weights keep changing at every iteration. Does there exist a gradient descent version

of IRLS which performs much cheaper operations at each time step, preferably with linear time

complexity? Preliminary experiments seem to indicate that a naive implementation that just does

a gradient step at each iteration instead of a weighted least squares step is flawed. We desire a

greater understanding of these cheaper implementations.

40

Bibliography

[1] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Improved Algorithms for Linear
Stochastic Bandits. In Proceedings of the 25th Annual Conference on Neural Information
Processing Systems (NIPS), 2011.

[2] Khurrum Aftab and Richard Hartley. Convergence of Iteratively Re-weighted Least Squares
to Robust M-Estimators. In Proceedings of the IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 480–487. IEEE, 2015.

[3] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can Ma-
chine Learning Be Secure? In Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS), pages 16–25. ACM, 2006.

[4] Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, and Purushottam Kar. Consistent
Robust Regression. In Proceedings of the 31st Annual Conference on Neural Information
Processing Systems (NIPS), pages 2107–2116, 2017.

[5] Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust Regression via Hard Thresholding.
In Proceedings of the 29th Annual Conference on Neural Information Processing Systems
(NIPS), pages 721–729, 2015.

[6] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, pages 47–60, New York, NY, USA, 2017. ACM.

[7] Rick Chartrand and Valentina Staneva. Restricted isometry properties and nonconvex com-
pressive sensing. Inverse Problems, 24(3):035020, 2008.

[8] Rick Chartrand and Wotao Yin. Iteratively reweighted algorithms for compressive sensing. In
Proceedings of the IEEE international conference on Acoustics, speech and signal processing
(ICASSP), pages 3869–3872. IEEE, 2008.

[9] Yudong Chen, Constantine Caramanis, and Shie Mannor. Robust Sparse Regression under
Adversarial Corruption. In Proceedings of the 30th International Conference on Machine
Learning (ICML), pages 774–782, 2013.

[10] William S Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots. Jour-
nal of the American Statistical Association, 74(368):829–836, 1979.

[11] Arnak Dalalyan and Yin Chen. Fused sparsity and robust estimation for linear models with
unknown variance. In Advances in Neural Information Processing Systems, pages 1259–1267,
2012.

[12] Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C Sinan Güntürk. Iteratively
Reweighted Least Squares Minimization for Sparse Recovery. Communications on Pure and
Applied Mathematics, 63(1):1–38, 2010.

[13] Peter J Green. Iteratively Reweighted Least Squares for Maximum Likelihood. Estimation,
and some Robust and Resistant Alternatives. Journal of the Royal Statistical Society. Series
B (Methodological), 46(2):149–192, 1984.

[14] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and JD Tygar. Ad-
versarial machine learning. In Proceedings of the 4th ACM Workshop on Artificial Intelligence
& Security (AISec), pages 43–58. ACM, 2011.

41

BIBLIOGRAPHY

[15] Peter J Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical
Statistics, 35(1):73–101, 1964.

[16] Peter J Huber. Robust Statistics. In International Encyclopedia of Statistical Science, pages
1248–1251. Springer, 2011.

[17] Prateek Jain, Purushottam Kar, et al. Non-Convex Optimization for Machine Learning.
Foundations and Trends R© in Machine Learning, 10(3-4):142–336, 2017.

[18] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank Matrix Completion using
Alternating Minimization. In Proceedings of the 45th annual ACM Symposium on Theory of
Computing (STOC), 2013.

[19] Ming-Jun Lai and Jingyue Wang. An Unconstrained lq Minimization with q ≤ 1 for Sparse
Solution of Underdetermined Linear Systems. SIAM Journal on Optimization, 21(1):82–101,
2011.

[20] Ming-Jun Lai, Yangyang Xu, and Wotao Yin. Improved Iteratively Reweighted Least
Squares for Unconstrained Smoothed `q Minimization. SIAM Journal on Numerical Anal-
ysis, 51(2):927–957, 2013.

[21] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des orbites des comètes.
F. Didot, 1805.

[22] Nam H Nguyen and Trac D Tran. Exact recoverability from dense corrupted observations via
l1-minimization. IEEE transactions on information theory, 59(4):2017–2035, 2013.

[23] Nam H Nguyen and Trac D Tran. Robust lasso with missing and grossly corrupted observa-
tions. IEEE Transactions on Information Theory, 59(4):2036–2058, 2013.

[24] Dianne P O’Leary. Robust Regression Computation Using Iteratively Reweighted Least
Squares. SIAM Journal on Matrix Analysis and Applications, 11(3):466–480, 1990.

[25] Michael Robert Osborne. Finite Algorithms in Optimization and Data Analysis. John Wiley
& Sons, Inc., 1985.

[26] Damian Straszak and Nisheeth K Vishnoi. IRLS and Slime Mold: Equivalence and Conver-
gence. In Innovations in Theoretical Computer Science (ITCS), 2017.

[27] James O Street, Raymond J Carroll, and David Ruppert. A Note on Computing Robust
Regression Estimates Via Iteratively Reweighted Least Squares. The American Statistician,
42(2):152–154, 1988.

[28] Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi. One pixel attack for fooling deep
neural networks. arXiv:1710.08864 [cs.LG], 2017.

[29] Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[30] Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and
Trends R© in Machine Learning, 8(1-2):1–230, 2015.

[31] John W Tukey. Contributions to Probability and Statistics: essays in honor of Harold
Hotelling, chapter A survey of sampling from contaminated distributions, pages 448–485.
Stanford University Press, 1960.

[32] John Wright and Yi Ma. Dense Error Correction Via l1-Minimization. IEEE Transactions on
Information Theory, 56(7):3540–3560, 2010.

[33] Huan Xu, Constantine Caramanis, and Shie Mannor. Robust Regression and Lasso. In
Proceedings of the 23rd Annual Conference on Neural Information Processing Systems (NIPS),
pages 1801–1808, 2009.

[34] Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit Singh Dhillon. Large-scale Multi-
label Learning with Missing Labels. In Proceedings of the 31st International Conference on
Machine Learning (ICML), 2014.

42

	Acknowledgements
	Introduction
	Our contributions
	Structure of this document

	Background
	Linear Regression
	The IRLS algorithm
	Robustness in Statistical Estimation
	Robust Regression
	Adversarial analysis

	Related Works
	Results for Robust Regression
	Iterative approaches
	IRLS

	Robust Regression and IRLS
	Introduction
	Overview of the IRLS algorithm
	Justifying IRLS: The Optimization Perspective
	Relation with Other Approaches
	Real world performance
	Practical concerns

	Convergence Guarantees for IRLS
	Convergence Analysis for Unidimensional Covariates
	A Few Preliminaries
	Convergence Analysis for Multidimensional Covariates

	Failure Analysis for IRLS
	The Flaw in the IRLS Methodology
	Failure cases for IRLS

	Conclusion and Future Direction
	Regularized IRLS
	Truncated IRLS
	IRLS for Sparse Recovery
	Gradient IRLS

