Machine Learning Practice and Theory

Day 9 - Feature Extraction

Govind Gopakumar

IIT Kanpur

Prelude

- Programming Tutorial on Ensemble methods, PCA up
- Lecture slides for usage of Neural Network libraries up
- Visual tool to create your own network and train them put up.

Recap

SVM

- Learn "good" lines
- Can be used with the kernel trick

Bagging and Boosting

- How to train multiple unrelated models
- How to train powerful models using weak parts

Neural networks

- High level overview of how they work
- Composition of different perceptrons and activations

Introduction

Features in data

- All of our examples have associated "features"
- We collect these features in a central place
- Our algorithms rely on properties of these features

Matrix notation

- We rely on it being of the form of *N*×*D*
- Most data in the real world may not be of this form!

Why do our algorithms work?

Geometric algorithms

- Linear seperability of the features
- Clustering induced by the features
- High relationship between features and the labels.

Dimensionality of features

- A lot of dimensions can make it a "rich" model
- Comes at computational cost
- Tricks like PCA, Kernel trick allow us to modify as per our problem.

Images

Ubiquity of images

- Cameras on every phone
- Instagram, Facebook all promote and host photos
- Key to understanding the world around us!

Where will this be useful?

- Face detection algorithms
- Image captioning algorithms
- Self driving cars!

Image representation

- Broad distinction : greyscale / color
- Image can be viewed as a giant matrix!
- In case of color, it could even be three matrices.

Image statistics

- Image sizes can vary too! (8x8 -> 1000x1000)
- What statistics can we compute?

Simple Image Features - I

Figure 1: Night vs Day

Simple Image Features - II

Night and day?

- What were the differences?
- What were same?
- How do we capture this using features?¹

Image statistics?

- Average color?
- Histogram of colors?
- Variance of colors?
- Majority color?

¹Image credit : Alexey Kljatov

Are they enough?

Figure 2: Dog vs Girl

Complex Image Features - I

Girl vs Dog?

- What was same?
- What was different?
- Can we capture this difference in features?²

Textures, edges, shapes

- What's a texture?
- What is an edge?
- What are shapes?

 $sports.com/humor/videos/powerpoint_presentation_dogs.htm$

²Image credit : http://www.guy-

Complex Image Features - II

What could we capture?

- Edge locations?
- Color changes?
- Local patterns?
- Textures?

How do we capture it?

- Filtering techniques
- Borrow from image processing

Filters / Feature detector

- Defined by a small matrix
- "Pass" or "convolve" it over the image
- Compute some statistic depending on filter type

Examples of filters

- Canny filter
- Sobel filter
- Harris filter

1D Filtering

- Toy example : array of data
- We wish to apply a feature detector to it
- Detector defined by matrix [2, 0, -2]

Example data

- Assume the array is : [1, 2, 3,, 10, 5, 4, 3, ... -3]
- You may have to "pad" the array!
- Where does it spike? What does the output look like?

Complex Image Features - V

Applying a filter / detector

- Put the matrix / filter on each point of the image
- "Convolve" it with the image
- Put output in the same location as original point

Sobel filter

- Defined using two matrices
- $\begin{bmatrix}
 1 & 0 & -1 \\
 2 & 0 & -2 \\
 1 & 0 & -1
 \end{bmatrix}$
- What would this do?
- How do we combine them?

Complex Image Features - VI

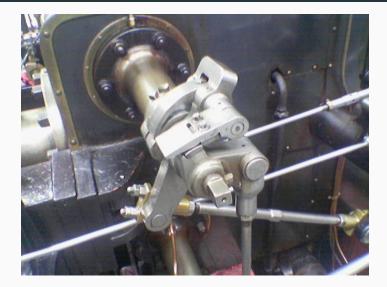


Figure 3: Original Image

Complex Image Features - VII

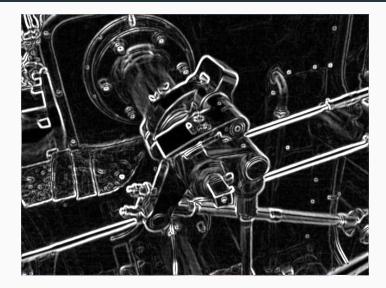


Figure 4: Filtered Image

What did that get us?

- Way to find locations of "edges"?
- Now more features are available!
- How do we use them?

How can we extend this?

- "Corner" discovering filters!
- "Ridge" discovering filters

Gradients

- We computed the gradients, can we be smart about it now?
- Simple idea : Don't use the entire image, aggregate it!
- Worked with color, intensity etc, why not this?

Histogram of Oriented Gradients

- "HOG" feature
- Aggregation of gradients in an image
- What images will be this useful for?

How does this generalize?

- Curve detection : Filter will describe a curve
- Shape detection : Filter will describe a shape

How do we choose these filters?

- We generally can't!
- Only basic ones will be general.
- Can we "learn" these filters from data?

Convolutional Neural Networks

- Layers : Different filters / kernels
- Multiple activations are used
- AlexNet ~12 layers, ResNet ~150 layers

How do they work?

- Low levels learn "edge", "corner" filters
- High levels combine this information, "shape" filters

Complex Image Fetures - XII

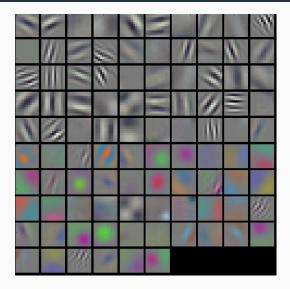


Figure 5: Neural Network visualization

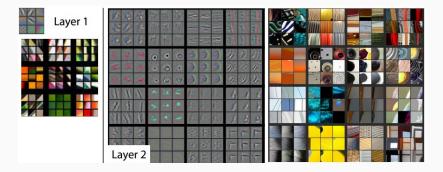


Figure 6: Neural Network visualization

Text

Ubiquity of text

- Emails, chats, posts
- News articles, most of the web is text!
- Incorporate more "knowledge" than images at times

Where will this be useful?

- Automatic summarization
- Question answering systems
- Knowledge graph systems

What form is text data in?

- Paragraphs, words
- Composed of a sequence of words, possibly following a grammar
- Differences in spelling, errors, punctuation

Basic text features

- Count vectorizer! What?
- Stemming Cluster similar words together
- Stop word removal Remove useless words

One-hot vectors

- Encode presence / absence of a word
- Either from a dictionary, or from a vocabulary
- Cleaning it up : lemmatizing, stop word removal
- Can even remove very common words

Extensions

- TF : Count of how many times a word appeared in a document
- IDF : $\log \frac{\|D\|}{\|\{d:t \in d\}\|}$
- TF-IDF : TF*IDF
- What does this measure?

Toy example

- Document 1 : { (this, 1), (is, 1), (a, 2), (sample, 1)}
- Document 2 : { (this, 1), (is, 1), (another, 2), (example, 3)}

Computation

- TF("this", D1) = 0.2
- $IDF("this") = \log \frac{2}{2} = 0$
- TF("example", D2) = 3/7
- IDF("example") = 0.301 (log2)
- TFIDF("example", D2) = 0.13

What can we do with this?

- We obtain a vector of values for each document
- Normalizing this, we can actually visualize a geometry!
- Use our favourite classifier on this!
- Dot product gives "similarity" between documents!

What information is lost?

- No grammatical structure
- Ordering of words is lost

Extending these methods

- Count n-grams : Obtain some increased structure
- Cluster similar words together : Allow some leeway in words
- Part of Speech tagging : Split sentences into verbs, nouns etc

How far can we go?

- "Meaning" is hard to justify
- "Grammar" is hard to model
- Statistical techniques can only take us so far!

Advanced text features - I

Where do we go from here?

- Learn word "embeddings"
- Google's "word2vec" model does exactly this.
- Learns from a corpus Word to vector space mapping

Context based modelling

- General idea : predict word from context/association
- Train "model" to predict word correctly from noise
- "Learns" semantic relations too (king man + woman = queen!)

Advanced text features - II

Results?

- Learns associations from text
- (Iraq Violence) = Jordan
- (Human Animals) = Ethics
- (Rome Italy) = (Beijing China)

Usage?

- Google's Machine Translation efforts have drastically improved!
- Real time translation of text, audio, video!
- Automatic summarization improves
- Story writing can also be done!

Advanced text features - III

Word	Cosine distance
norway	0.760124
denmark	0.715460
finland	0.620022
switzerland	0.588132
belgium	0.585835
netherlands	0.574631
iceland	0.562368
estonia	0.547621
slovenia	0.531408

Figure 7: Similarity with Sweden

Advanced text features - IV

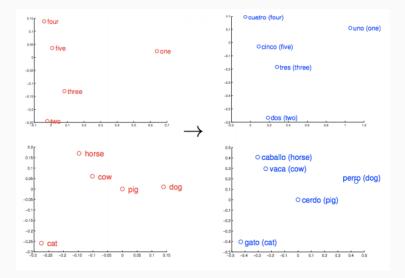


Figure 8: Embeddings Learned

Video

As an image itself!

- Consider a video to be hundreds of images!
- Pro : Adapt techniques in image processing
- Con : Far too much data

As a set of moving images

- Compute "flow" between images
- Identify features based on flow
- Actions : flow in specific regions!

Conclusion

Takeaways

- How to generate features in images
- What to consider when generating features
- What features exist for text data

Announcements

- Last class tomorrow no theory, practical aspects of ML
- Programming tutorials will be uploaded over the next few days

• Lecture 24, CS 771 IIT Kanpur