
Machine Learning - Practice and Theory
Day 8 - SVM, Ensembles, Neural Networks

Govind Gopakumar

IIT Kanpur

1



Prelude

2



Announcements

• Doubt clearing session on Thursday (1500 - 1600)
• Programming tutorial on PCA by tomorrow (hopefully)
• Programming tutorial on Kernels (in SVM)

3



Recap

Principal Components Analysis

• Captures how the data “spreads”
• Means to reduce dimensionality
• Can capture multiple correlations in the data

Kernels

• Increase dimensionality without actually increasing it
• Works if we require only dot products
• Can learn non-linear surfaces with linear methods!

4



Support Vector Machines

5



Review of Perceptron

Model overview

• 〈w , x〉 > 0.5, < 0.5 : decision rule
• Learnt only a hyperplane
• Could be learnt very fast (stochastic method)

Drawbacks

• What line does it finally learn?
• Can this line be good? Or bad?
• What line should we learn?

6



SVM - I

Background

• Notion of a “margin”
• When is a line good? When is a line bad?
• Do we increase margin? Or decrease it?

Loss functions

• Perceptron loss : yn(〈w , xn〉) ≤ 0
• Can we modify this?

7



SVM - II

Model overview

• Learn a “max margin” line
• Correctly classifies both classes
• Classify them with some distance

Time complexity?

• What vectors do I need to specify the model later on?
• “Support Vectors” : how did this come?

8



SVM - III

Learning the SVM?

• A bit more advanced maths than useful right now
• Can be solved exactly in case of seperable data
• If data isn’t seperable? : “Soft - Margin”

Using the SVM

• Wherever we have linear seperability
• What if we don’t have seperability?

9



SVM - IV

Concluding remarks

• Extremely popular : You WILL see it used everywhere!
• Highly optimized packages available, even in python!
• Active area of research

But it still learns a line?

• Kernel trick!
• Can also be used for regression

10



Boosting and ensembles

11



Ensemble models - I

What?

• What is an “ensemble”?
• How do we construct it?
• Different models on same data vs same model on different

data?

How?

• Aggregate or voting on predictions
• Stack : predictions as features!
• Levels of models!

12



Ensemble models - II

Bagging

• Create multiple copies of data
• Train similar / same models on these copies
• Aggregate predictions

Why would this work?

• Each model captures the variance of data
• Noise is spread out, reduced
• How many replications?

13



Ensemble models - III

Boosting

• Use only weak algorithms
• Combine them iteratively to get better predictions
• Increase weight of hard examples

Process

• Have T different “weak” models
• Start with uniform weights for all points
• Learn an initial model
• Iteratively increase weights depending on previous mistakes
• Learn better models

14



Ensemble models - IV

AdaBoost

• Choose a weak model (Perceptron?)
• Let it learn from data
• Check where it made errors : increase these points!
• Choose another perceptron, learn on new data

Can it learn complicated shapes?

• Yes, at times
• Outliers can screw it up a lot at times

15



Ensemble models - V

Comments

• Bagging vs Boosting? : no real winner
• Bagging allows parallel learning
• Boosting keeps decreasing training error

Why should we use either?

• Reduce overfitting (multiple models)
• Combine predictions

16



Neural Networks

17



Review of Perceptron

Model overview

• 〈w , x〉 > 0.5, < 0.5 : decision rule
• Learnt only a hyperplane
• Could be learnt very fast (stochastic method)

How did we learn this?

• Stochastic Gradient descent
• w t+1 = w t − l ′(w t)

18



Multi layer Perceptron - I

Structure

• Input layer : Where you feed in data
• Output layer : Where you get output (class, value)
• Hidden layer : Middle “layers”

Zooming in

• All layers : Composed of nodes
• All nodes : Composed of simple perceptron
• Activation : Perceptron output is “activated”

19



Multi layer Perceptron - II

Computation

• Each node is like a neuron
• Computes a weighted sum of its inputs
• “Activates” it

Use

• One hidden layer is enough to approximate any function!
• Chain together “deep” and “wide” networks

20



Multi layer Perceptron - III

Feature extraction

• Lower layers “learn” smaller features
• Higher layers “learn” larger features

Activation functions

• Normal perceptron uses step function (0-1)
• Sigmoid function
• ReLU function
• Why are non-linear functions needed?

21



Multi layer Perceptron - IV

Feedforward

• Input is passed through the network, layer by layer
• x → f (W T x)→ g(V T f (W T x))→ . . .

• Weighted sum followed by activation

Large networks

• Deep : Multiple layers
• Wide : Multiple nodes within layers

22



Multi layer Perceptron - V

How do we learn this?

• What are the unknowns?
• What is the loss function?
• Can we do gradient descent?

Backpropagation

• Push errors / updates through the network
• Use “chain rule” from calculus to derive gradients!

23



Multi layer Perceptron - VI

Backpropagation

• Compute gradients starting from last layer
• Compute next set of gradients step by step

Example network

• Regression problem : y = f (X )
• Two layers : yi = V T f (W T xi)

24



Multi layer Perceptron - VII

Backpropagation of errors

• Loss function : minW ,V
∑(

yi − V T f (W T xi)
)2

• Let us look at it as :
∑

(yi − 〈V , hi〉)2

• Gradient w.r.t V is easy : ∂L
∂V = −2

∑
(yi − 〈V , hi〉)hi

• Simple form : −2
∑

enhn

Chain rule

• We now need to update W as well - Chain rule
• ∂L

∂W = ∂L
∂f

∂f
∂W

• ∂L
∂fk = −

∑
envk

• ∂f
∂W =

∑
f ′(w t

kxn)

25



Multi layer Perceptron - VII

Backpropagation

• Compute forward pass : error at output layer
• Compute backward pass : gradients at each layer
• Update parameter at each backward pass

Computational issues

• Update of parameter at layer i depends on i + 1
• Parallel updates if we have multiple nodes!

26



Multi layer Perceptron - VIII

So why the hype?

• Chaining layers increases power
• Extremely fast computation on GPUs
• Extremely powerful structures can be learnt!

Is the hype justified?

• Overall loss is extremely non-convex
• Sometimes blind usage is promoted!
• Theory is not very well developed

27



Conclusion

28



Concluding Remarks

Takeaways

• Combining different methods
• Boosting, Bagging
• SVM : Powerful lines!
• MLP : The most powerful machine learning tool known to us!

Announcements

• Doubt clearing session tomorrow : come with doubts!
• Tutorials for SVM + Kernel up
• Will put up tutorial for Kernels in other methods

29



References

• Lecture 11, CS 771 IIT Kanpur
• Lecture 9, CS 771 IIT Kanpur
• Lecture 21, CS 771 IIT Kanpur

30

https://cse.iitk.ac.in/users/piyush/courses/ml_autumn16/771A_lec11_slides.pdf
https://cse.iitk.ac.in/users/piyush/courses/ml_autumn16/771A_lec9_slides.pdf
https://cse.iitk.ac.in/users/piyush/courses/ml_autumn16/771A_lec21_slides.pdf

	Prelude
	Support Vector Machines
	Boosting and ensembles
	Neural Networks
	Conclusion

