Machine Learning Practice and Theory

Day 3 - Supervised learning - Distance based methods

Govind Gopakumar
IIT Kanpur

Announcements

- Project groups : final
- Code to be uploaded by tonight
- Webpage - govg.github.io/acass

Recap

Mathematics

- Probability
- Statistics (probably not very well)
- Linear Algebra
- Optimization Theory

MLE modelling

How to assume a model, work out the loss/reward function, optimize it, and arrive at a final model.

Proximity Based Methods

What is the end goal?

Supervised learning

- Predict a class / value for new points
- "Train" using lots of old points, their labels
- Learn something meaningful
- Hopefully generalizes!

What's the easiest way to assign a label/value?

Naive method of doing classification?

- Choose points which are nearby?
- Choose cluster which is nearby?

Formal "names"

- K-nearest Neighbors
- Distance from means

Our first classifier

Distance based classifier

Given Input

- N examples: training data
- N labels : training labels
- N_{+}, N_{-}respective number of points

What is the objective now?

- Some "model" that predicts for new data
- Accounts for more than 1 class?

Distance from means - I

Overview of model

- Compute center of each class / label
- Assign the new point to closest mean
- What does "training" mean now?
- What does "testing" mean now?

Coming up with our "decision function"

- μ_{+}: positive mean
- μ_{-}: negative mean
- $f\left(x^{\text {new }}\right)=d\left(x^{\text {new }}, \mu_{-}\right)-d\left(x^{\text {new }}, \mu_{+}\right)$

Distance from means - II

As similarity to training data

- $\left\|x^{\text {new }}-\mu_{-}\right\|^{2}-\left\|x^{\text {new }}-\mu_{+}\right\|^{2}$
- $\left\langle\mu_{+}-\mu_{-}, x^{\text {new }}\right\rangle+C$
- Can be simplified into : $f\left(x^{\text {new }}\right)=\sum \alpha_{i}\left\langle x_{i}, x^{\text {new }}\right\rangle+B$

What does this mean?

Distance from means - III

Geometry of the decision function

- What does the boundary look like for this?
- What can it learn? What can't it learn?

Drawbacks and strengths?

- Storage?
- Time taken?
- When can this be a bad method?
- When can this be good?

Distance from means - IV

Extending this

- Dealing with different kinds of features (weight, height)
- Dealing with different kinds of distances
- Adding a probability distribution to it!

K nearest neighbors

KNN - I

Overview of model

- Assign each point the class / value of its neighbor
- "K" - how many neighbors you account for
- What does "training" mean here?
- What would "testing" mean?

Geometry of the decision function

- What sort of boundary does this generate?
- How powerful can this be?
- The "distance" can always be measured in other forms!

KNN - II

Drawbacks and strengths?

- Storage?
- Time taken
- When can this be good or bad?

Things to consider for this model

- What happens if we have outliers?
- Where could this be an issue?

KNN - III

What is the optimal K ?

- What happens if we increase K?
- Consider limit of K -> N?
- What's the best choice then?

Extensions to KNN

- Can this be extended in the regression / labelling setting?
- Transformation of coordinates - How does that affect KNN?

Partition based methods

Why do we require better methods?

Geometry of the problem

- KNN, DfM suffers from scaling
- Our distance function must be chosen correctly
- Outlier can change a lot about the problem

Model implementation

- Require a very large amount of space (KNN)
- Is not space efficient
- Is not very powerful (DfM)

Solution? (Partitioning?)

Asking questions from data

Let's classify oranges!

- You are given 1000 oranges
- What you know : color, weight, radius, number of spots
- What you want to know : is the orange good or bad?

Natural human thought?

- Ask questions of the data
- Does this approach scale?
- How do we make this more abstract?

Decision Trees - I

Model overview

- Defined by a set of rules, in a tree form
- Each node checks some feature
- We don't need it to be binary
- At the leaf, we can do classification

Geometry of the problem

- What is the decision boundary this forms?
- How does this look in higher dimensions?

Decision Trees - II

How do we ask the right questions?

- Which features are informative?
- Which features are useless?
- Variance, Entropy?

How useful is a feature for us?

- Do we need to know how it varies?
- Do we need to see how it relates to class?

Decision Trees - III

Entropy to measure utility

- Entropy: $-\sum p_{i} \log p_{i}$
- Information Gain: H $-H_{f}$

How does this help us?

- Choose feature with highest "Information Gain"
- How do we compute this?

Decision Trees - IV

Playing Tennis

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Trees - V

Computing IG for features

- Let us compute IG for Wind
- If we choose Wind, we get two splits (Weak, Strong)
- First split will have $\{2-, 6+\}$
- Second split will have $\{3+, 3-\}$

Values

- Entropy for first : 0.81125
- Entropy for second : 1
- Total weighted entropy : 0.892
- IG : $0.94-0.892=0.048$

Decision Trees - VI

IG for all features

- Outlook: 0.246
- Humidity : 0.151
- Wind : 0.048
- Temperature : 0.029

Choosing features?

- Best: Outlook
- Worst : Temperature

Decision Trees - VII

For real valued features?

- Choose a value which gets best IG
- How efficient is this?
- How much time would this take?

Extending this

- Random forests!
- Use the power of randomness

Conclusion

Concluding Remarks

Takeaways

- Three different classifiers, each exploiting geometry
- Issues with such methods
- Importance of space, time when doing ML
- How human intuition leads to natural models

Announcements

- Programming "Assignment" will be up hopefully tonight
- Sample code for all the classifiers taught so far
- Quiz 1 will be uploaded tomorrow night

References

- Lecture 2, CS 771 IIT Kanpur
- Lecture 3, CS 771 IIT Kanpur
- Tom Mitchell, Tennis via Decision Trees

