Machine Learning Practice and Theory

Day 2 - Mathematical Background

Govind Gopakumar
IIT Kanpur

Announcements

- Pre-Course survey
- Programming assignments
- Project ideas and partners
- Installation of Jupyter / IPython notebook
- Webpage : govg.github.io/acass

Machine Learning

- Trends in data
- Using the right model, and reasonable loss functions
- Transforming the problem according to simplicity

Divisions in Machine Learning

- Unsupervised learning : goal is to discover patterns in data
- Supervised learning : goal is to predict some aspect using data

Overview

Notations

Dealing with data :

- X : Data matrix (NxD)
- Y: Label matrix (N×1)
- w : Model parameters
- $L(X, Y, w)$: Loss of model w on X, Y

Dealing with model:

- λ : Hyper parameters of a model
- w^{*} : Optimal model (may or may not be unique)

Mathematics in Machine Learning

- How do we describe and manipulate data?

Use a matrix!

- How do we "model" something?

Use a vector, or a function!

- How do we analytically solve models?

Use Linear Algebra!

- How do we mathematically "learn"?

Use Calculus, Linear Algebra!

Probability

Definitions

- Event: Some occurence that is desirable
- Sample space: All possible events
- $P(a)=\frac{\|a\|}{\|a\|+\left\|a^{\prime}\right\|}$

Terms

- $\prod p\left(a_{i}\right)$ - probability of multiple events
- Can also model likelihood of event
- Naturally leads to MLE (general technique, to be covered later)

Random Variables

What are they?

- Map between events and some value
- Represented as a probability distribution function
- Discrete, continuous, categorical etc

How do we use them?

- Describe p(a) for a random variable
- Examples include normal, beta, poisson
- Integrate to 1

Distributions - I

Continuous

- Gaussian : Model any real number distribution
- Beta : Model number between $[0,1]$
- Dirichlet: Model a vector that sums to 1

Discrete

- Bernoulli : Model number of heads in a coin toss
- Poisson : Model counts of a variable

These can be combined together (joint, marginal)

Distributions - II

Gaussian distribution :

- $p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-1}{2 \sigma^{2}}(x-\mu)^{2}}$
- μ : Mean of the distribution
- σ^{2} : Variance of the distribution

Multivariate Gaussian :

- $p(x)=\frac{1}{\sqrt{2 \pi^{k}|\Sigma|}} e^{\frac{-1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}$
- μ : Mean vector
- Σ : Covariance matrix

Distributions - III

Multiple variables :

- Define a "joint" distribution
- Denote by $\mathrm{p}(\mathrm{v}, \mathrm{u})$
- Is this the same as $\mathrm{p}(\mathrm{u})^{*} \mathrm{p}(\mathrm{v})$? When is it not?

Examples in terms of Gaussians :

- Consider two variables, $v \sim \mathcal{N}\left(\mu_{v}, \sigma_{v}\right), u \sim \mathcal{N}\left(\mu_{u}, \sigma_{u}\right)$
- How does the joint distribution look?
- What if they were drawn from a 2D Gaussian?
- When does the second case reduce to the first?

Bayes theorem - I

Invert the event!

- Reverse the probability of events
- $P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}$

Terms in this expression

- $P(a \mid b)$ - called the posterior
- $P(b \mid a)$ - called the likelihood
- $P(a)$ - called the prior

Bayes theorem - II

Setting

- B: Color of the ball
- A : Selection of box
- $B_{1}(1,1,1), B_{2}(2,0,0), B_{3}(0,0,1)$
- All boxes are equally likely

Inverting the event

- $P(b \mid a)$: Probability that color was b given box is a.
- $P(a \mid b)$: Probability that box was a given color is b.
- How do we use Bayes theorem here?

Statistics

Statistics of a sample - I

Mean of sample

- $\mathbb{E}[X]$ - "average" of the distribution
- When can it be useless?
- When can it work as a representation?

Variances and covariances

- σ^{2} - "spread" of the distribution
- Can be used to "normalize" data
- Can be used to see where data is useless

Generally, we do not come across other "moments" of the data in Machine Learning (skew, kurtosis etc).

Statistics of a sample - II

Of standard distributions

- Gaussian: Σ
- Bernoulli : $p(1-p)$

Of a sample

- Defined as "empirical" quantities
- Mean : μ
- Variance / Covariance
- Used in "moment matching" techniques

Linear Algebra

Spaces

Constituents :

- Vectors (v,u,w)
- Dot products
- Norms

Utility :

- Our data "lives" in some space
- Our model describes "shapes" in that space
- Must deal with math of this space!

Matrix Algebra

Basics

- Matrix (NxD) : Can denote a set of points
- Vector ($1 \times \mathrm{D}$) : Denotes a single point
- Usually denotes our data

Properties

- Invertibility : $A A^{-1}=1$
- Definiteness: PD / PSD

Other terms

Eigenvalues

- $A v=\lambda v: \lambda$ is an "eigenvalue"
- Denotes a direction in the space of the matrix

Measures of vectors

- $\|x\|_{p}$ - denotes the p-norm
- Different norms have different interpretations
- Similarities (cos, distance)

Functions and Optimization

Function shapes

Convexity

- Convex (and concave) functions have single optima
- Easy to optimize over
- Follow the slope method
- Closed under summation (this is very very nice and important!)

Smoothness and differentiability

- If a function is "smooth", it will be easy to find the slope.
- If it has kinks, slightly harder to find actual gradients!
- If it is discontinuous, no real way to find gradients!

Optimization theory

Basics :

- Gradient descent : how to follow the slope
- Simple gradients for simple loss functions
- Combine gradients for sum of functions

Examples of gradients :

- $(w-x)^{2}: 2(w-x)$
- $e^{-w}:-e^{-w}$

Example of gradient descent

- For simple functions, easy to compute gradients
- General form of GD : $x^{t+1}=x^{t}-\eta g^{t}$
- Consider : $f(x)=(x+c)^{2}$
- Gradient : $g(x)=2(x+c)$

Let's do gradient descent on this!

Modelling

Probabilistic modelling

Coin tossing : model

- What do we wish to model? : bias of coin (k)
- What data do we have? : H heads, T tails observed

MLE modelling

- $\mathrm{p}(\mathrm{H}$ heads, T tails)?
- What can we do with this now?
- "Likelihood" can be our loss!
- What is the optimal choice here?
- Why could this fail?

Conclusion

Takeaways

- How to write down probability of events
- What the mean and variance tell us about a random quantity
- Why matrices are used in Machine Learning, how we manipulate them
- What sort of loss functions should we consider? How do we actually use them?

References

- Review lecture in CS771, IIT Kanpur
- Linear Algebra Overview
- Probability Overview
- Matrix Algebra Overview

Next Lecture overview

Our first classifier

Naive method of doing classification?

- Choose points which are nearby?
- Choose cluster which is nearby?

Formal "names"

- K-nearest Neighbors
- Distance from means

Distance from means - I

Overview of model

- Compute center of each class / label
- Assign the new point to closest mean
- What does "training" mean now?
- What does "testing" mean now?

Drawbacks and strengths?

- Storage?
- Time taken?
- When can this be a bad method?
- When can this be good?

Distance from means - II

Coming up with our "decision function"

- μ_{+}: positive mean
- μ_{-}: negative mean
- $f\left(x^{\text {new }}\right)=d\left(x^{\text {new }}, \mu_{-}\right)-d\left(x^{\text {new }}, \mu_{+}\right)$

Geometry of the decision function

- What does the boundary look like for this?
- What can it learn? What can't it learn?

Distance from means - III

As similarity to training data

- $\left\|x^{\text {new }}-\mu_{-}\right\|^{2}-\left\|x^{\text {new }}-\mu_{+}\right\|^{2}$
- $\left\langle\mu_{+}-\mu_{-}, x^{\text {new }}\right\rangle+C$
- Can be simplified into : $f\left(x^{\text {new }}\right)=\sum \alpha_{i}\left\langle x_{i}, x^{\text {new }}\right\rangle+B$

What does this mean?

KNN - I

Overview of model

- Assign each point the class / value of its neighbor
- "K" - how many neighbors you account for
- What does "training" mean here?
- What would "testing" mean?

Drawbacks and strenghts?

- Storage?
- Time taken
- When can this be good or bad?

KNN - II

Geometry of the decision function

- What sort of boundary does this generate?
- How powerful can this be?
- The "distance" can always be measured in other forms!

Things to consider for this model

- What happens if we have outliers?
- Where could this be an issue?

KNN - III

What is the optimal K ?

- What happens if we increase K?
- Consider limit of K -> N?
- What's the best choice then?

Extensions to KNN

- Can this be extended in the regression / labelling setting?
- Transformation of coordinates - How does that affect KNN?

