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Announcements

• Pre-Course survey
• Programming assignments
• Project ideas and partners
• Installation of Jupyter / IPython notebook
• Webpage : govg.github.io/acass
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Recap

Machine Learning

• Trends in data
• Using the right model, and reasonable loss functions
• Transforming the problem according to simplicity

Divisions in Machine Learning

• Unsupervised learning : goal is to discover patterns in data
• Supervised learning : goal is to predict some aspect using data
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Overview
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Notations

Dealing with data :

• X : Data matrix (NxD)
• Y : Label matrix (Nx1)
• w : Model parameters
• L(X,Y,w) : Loss of model w on X,Y

Dealing with model:

• λ : Hyper parameters of a model
• w∗ : Optimal model (may or may not be unique)

5



Mathematics in Machine Learning

• How do we describe and manipulate data?
Use a matrix!

• How do we “model” something?
Use a vector, or a function!

• How do we analytically solve models?
Use Linear Algebra!

• How do we mathematically “learn”?
Use Calculus, Linear Algebra!
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Probability
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Basics

Definitions

• Event : Some occurence that is desirable
• Sample space : All possible events
• P(a) = ‖a‖

‖a‖+‖a′‖

Terms

•
∏

p(ai ) - probability of multiple events
• Can also model likelihood of event
• Naturally leads to MLE (general technique, to be covered later)
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Random Variables

What are they?

• Map between events and some value
• Represented as a probability distribution function
• Discrete, continuous, categorical etc

How do we use them?

• Describe p(a) for a random variable
• Examples include normal, beta, poisson
• Integrate to 1
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Distributions - I

Continuous

• Gaussian : Model any real number distribution
• Beta : Model number between [0,1]
• Dirichlet : Model a vector that sums to 1

Discrete

• Bernoulli : Model number of heads in a coin toss
• Poisson : Model counts of a variable

These can be combined together (joint, marginal)
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Distributions - II

Gaussian distribution :

• p(x) = 1√
2πσ2 e

−1
2σ2 (x−µ)2

• µ : Mean of the distribution
• σ2 : Variance of the distribution

Multivariate Gaussian :

• p(x) = 1√
2πk |Σ|

e
−1
2 (x−µ)T Σ−1(x−µ)

• µ : Mean vector
• Σ : Covariance matrix
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Distributions - III

Multiple variables :

• Define a “joint” distribution
• Denote by p(v,u)
• Is this the same as p(u)*p(v)? When is it not?

Examples in terms of Gaussians :

• Consider two variables, v ∼ N (µv , σv ), u ∼ N (µu, σu)
• How does the joint distribution look?
• What if they were drawn from a 2D Gaussian?
• When does the second case reduce to the first?
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Bayes theorem - I

Invert the event!

• Reverse the probability of events
• P(a|b) = P(b|a)P(a)

P(b)

Terms in this expression

• P(a|b) - called the posterior
• P(b|a) - called the likelihood
• P(a) - called the prior
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Bayes theorem - II

Setting

• B : Color of the ball
• A : Selection of box
• B1(1, 1, 1),B2(2, 0, 0),B3(0, 0, 1)
• All boxes are equally likely

Inverting the event

• P(b | a) : Probability that color was b given box is a.
• P(a | b) : Probability that box was a given color is b.
• How do we use Bayes theorem here?
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Statistics
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Statistics of a sample - I

Mean of sample

• E[X ] - “average” of the distribution
• When can it be useless?
• When can it work as a representation?

Variances and covariances

• σ2 - “spread” of the distribution
• Can be used to “normalize” data
• Can be used to see where data is useless

Generally, we do not come across other “moments” of the data in
Machine Learning (skew, kurtosis etc).
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Statistics of a sample - II

Of standard distributions

• Gaussian : Σ
• Bernoulli : p(1− p)

Of a sample

• Defined as “empirical” quantities
• Mean : µ
• Variance / Covariance
• Used in “moment matching” techniques
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Linear Algebra
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Spaces

Constituents :

• Vectors (v,u,w)
• Dot products
• Norms

Utility :

• Our data “lives” in some space
• Our model describes “shapes” in that space
• Must deal with math of this space!
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Matrix Algebra

Basics

• Matrix (NxD) : Can denote a set of points
• Vector (1xD) : Denotes a single point
• Usually denotes our data

Properties

• Invertibility : AA−1 = I
• Definiteness : PD / PSD
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Other terms

Eigenvalues

• Av = λv : λ is an “eigenvalue”
• Denotes a direction in the space of the matrix

Measures of vectors

• ‖x‖p - denotes the p-norm
• Different norms have different interpretations
• Similarities (cos, distance)
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Functions and Optimization

22



Function shapes

Convexity

• Convex (and concave) functions have single optima
• Easy to optimize over
• Follow the slope method
• Closed under summation (this is very very nice and important!)

Smoothness and differentiability

• If a function is “smooth”, it will be easy to find the slope.
• If it has kinks, slightly harder to find actual gradients!
• If it is discontinuous, no real way to find gradients!
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Optimization theory

Basics :

• Gradient descent : how to follow the slope
• Simple gradients for simple loss functions
• Combine gradients for sum of functions

Examples of gradients :

• (w − x)2 : 2(w − x)
• e−w : −e−w
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Example of gradient descent

• For simple functions, easy to compute gradients
• General form of GD : x t+1 = x t − ηg t

• Consider : f (x) = (x + c)2

• Gradient : g(x) = 2(x + c)

Let’s do gradient descent on this!
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Modelling
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Probabilistic modelling

Coin tossing : model

• What do we wish to model? : bias of coin (k)
• What data do we have? : H heads, T tails observed

MLE modelling

• p(H heads, T tails)?
• What can we do with this now?
• “Likelihood” can be our loss!
• What is the optimal choice here?
• Why could this fail?
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Conclusion
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Takeaways

• How to write down probability of events
• What the mean and variance tell us about a random quantity
• Why matrices are used in Machine Learning, how we

manipulate them
• What sort of loss functions should we consider? How do we

actually use them?
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Next Lecture overview
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Our first classifier

Naive method of doing classification?

• Choose points which are nearby?
• Choose cluster which is nearby?

Formal “names”

• K-nearest Neighbors
• Distance from means
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Distance from means - I

Overview of model

• Compute center of each class / label
• Assign the new point to closest mean
• What does “training” mean now?
• What does “testing” mean now?

Drawbacks and strengths?

• Storage?
• Time taken?
• When can this be a bad method?
• When can this be good?
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Distance from means - II

Coming up with our “decision function”

• µ+ : positive mean
• µ− : negative mean
• f (xnew ) = d(xnew , µ−)− d(xnew , µ+)

Geometry of the decision function

• What does the boundary look like for this?
• What can it learn? What can’t it learn?
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Distance from means - III

As similarity to training data

• ‖xnew − µ−‖2 − ‖xnew − µ+‖2

• 〈µ+ − µ−, xnew 〉+ C
• Can be simplified into : f (xnew ) =

∑
αi〈xi , xnew 〉+ B

What does this mean?
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KNN - I

Overview of model

• Assign each point the class / value of its neighbor
• “K” - how many neighbors you account for
• What does “training” mean here?
• What would “testing” mean?

Drawbacks and strenghts?

• Storage?
• Time taken
• When can this be good or bad?
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KNN - II

Geometry of the decision function

• What sort of boundary does this generate?
• How powerful can this be?
• The “distance” can always be measured in other forms!

Things to consider for this model

• What happens if we have outliers?
• Where could this be an issue?
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KNN - III

What is the optimal K?

• What happens if we increase K?
• Consider limit of K -> N?
• What’s the best choice then?

Extensions to KNN

• Can this be extended in the regression / labelling setting?
• Transformation of coordinates - How does that affect KNN?
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